Constitutive behavior study of copper alloy under cold and hot compression conditions towards LN2 assisted cutting

Baochen Li , Yessine Ayed , Guénaël Germain , Jun Zhang
{"title":"Constitutive behavior study of copper alloy under cold and hot compression conditions towards LN2 assisted cutting","authors":"Baochen Li ,&nbsp;Yessine Ayed ,&nbsp;Guénaël Germain ,&nbsp;Jun Zhang","doi":"10.1016/j.procir.2025.02.097","DOIUrl":null,"url":null,"abstract":"<div><div>New standards are being introduced to eliminate toxic elements in materials. For instance, copper alloys should no longer contain lead, although this makes them more challenging to machine. Additionally, for environmental reasons, it is crucial to eliminate cutting oils. To address these two challenges, cryogenic cooling during machining can be considered. However, it is first essential to understand the precise mechanical response of the material at low temperatures. This study conducts compression tests on copper across a wide temperature range, from cryogenic temperatures (liquid nitrogen, LN<sub>2</sub>) to 700°C, and at strain rates from 0.01/s to 10/s. The microstructure of deformed test samples is also characterized by electron back-scattered diffraction (EBSD) to compare the different plastic deformation characteristics under low and high temperature. The stress-strain curves are fitted with Johnson-Cook (JC) model, which is then implemented into the finite element simulation of the compression process. The results indicate that the JC model with the fitted parameters is not precise enough in terms of modelling very low temperature dynamic response of copper alloy, thus is not proper for the simulation of cryogenic cooling assisted cutting. This is because different characteristics of strain hardening behavior is discovered under LN<sub>2</sub> atmosphere temperature and ordinary cutting temperature, which is further induced by a transition of plastic deformation mechanism with increased temperature. Therefore, a new constitutive law is proposed considering deformation mechanism at both traditional cutting temperature and cryogenic conditions. The results indicate that the new model has a better fitting of experimental curves than JC model. This study is helpful for the understanding of low temperature copper deformation behavior and new constitutive model exploitation oriented to cryogenic cooling assisted cutting.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"133 ","pages":"Pages 567-572"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125001878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New standards are being introduced to eliminate toxic elements in materials. For instance, copper alloys should no longer contain lead, although this makes them more challenging to machine. Additionally, for environmental reasons, it is crucial to eliminate cutting oils. To address these two challenges, cryogenic cooling during machining can be considered. However, it is first essential to understand the precise mechanical response of the material at low temperatures. This study conducts compression tests on copper across a wide temperature range, from cryogenic temperatures (liquid nitrogen, LN2) to 700°C, and at strain rates from 0.01/s to 10/s. The microstructure of deformed test samples is also characterized by electron back-scattered diffraction (EBSD) to compare the different plastic deformation characteristics under low and high temperature. The stress-strain curves are fitted with Johnson-Cook (JC) model, which is then implemented into the finite element simulation of the compression process. The results indicate that the JC model with the fitted parameters is not precise enough in terms of modelling very low temperature dynamic response of copper alloy, thus is not proper for the simulation of cryogenic cooling assisted cutting. This is because different characteristics of strain hardening behavior is discovered under LN2 atmosphere temperature and ordinary cutting temperature, which is further induced by a transition of plastic deformation mechanism with increased temperature. Therefore, a new constitutive law is proposed considering deformation mechanism at both traditional cutting temperature and cryogenic conditions. The results indicate that the new model has a better fitting of experimental curves than JC model. This study is helpful for the understanding of low temperature copper deformation behavior and new constitutive model exploitation oriented to cryogenic cooling assisted cutting.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信