Torus knotted Reeb dynamics and the Calabi invariant

IF 1.5 1区 数学 Q1 MATHEMATICS
Jo Nelson , Morgan Weiler
{"title":"Torus knotted Reeb dynamics and the Calabi invariant","authors":"Jo Nelson ,&nbsp;Morgan Weiler","doi":"10.1016/j.aim.2025.110236","DOIUrl":null,"url":null,"abstract":"<div><div>We establish quantitative existence, action, and linking bounds for all Reeb orbits associated to any contact form on the standard tight three-sphere admitting the standard transverse positive <span><math><mi>T</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> torus knot as an elliptic Reeb orbit with canonically determined rotation numbers. This can be interpreted through an ergodic lens for Reeb flows transverse to a surface of section. Our results also allow us to deduce an upper bound on the mean action of periodic orbits of naturally associated classes of area preserving diffeomorphisms of the associated Seifert surfaces of genus <span><math><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> in terms of the Calabi invariant, without the need for genericity or Hamiltonian hypotheses. Our proofs utilize knot filtered embedded contact homology, which was first introduced and computed by Hutchings for the standard transverse unknot in the irrational ellipsoids and further developed in our previous work. We continue our development of nontoric methods for embedded contact homology and establish the knot filtration on the embedded contact homology chain complex of the standard tight three-sphere with respect to positive <span><math><mi>T</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> torus knots, where there are nonvanishing differentials. We also obtain obstructions to the existence of exact symplectic cobordisms between positive transverse torus knots.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"470 ","pages":"Article 110236"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001343","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish quantitative existence, action, and linking bounds for all Reeb orbits associated to any contact form on the standard tight three-sphere admitting the standard transverse positive T(p,q) torus knot as an elliptic Reeb orbit with canonically determined rotation numbers. This can be interpreted through an ergodic lens for Reeb flows transverse to a surface of section. Our results also allow us to deduce an upper bound on the mean action of periodic orbits of naturally associated classes of area preserving diffeomorphisms of the associated Seifert surfaces of genus (p1)(q1)/2 in terms of the Calabi invariant, without the need for genericity or Hamiltonian hypotheses. Our proofs utilize knot filtered embedded contact homology, which was first introduced and computed by Hutchings for the standard transverse unknot in the irrational ellipsoids and further developed in our previous work. We continue our development of nontoric methods for embedded contact homology and establish the knot filtration on the embedded contact homology chain complex of the standard tight three-sphere with respect to positive T(p,q) torus knots, where there are nonvanishing differentials. We also obtain obstructions to the existence of exact symplectic cobordisms between positive transverse torus knots.
环结里布动力学和卡拉比不变量
我们建立了在标准紧三球上与任何接触形式相关的所有Reeb轨道的定量存在、作用和连接界,该标准紧三球承认标准横向正T(p,q)环面结为具有正则确定旋转数的椭圆Reeb轨道。这可以通过一个遍历透镜来解释,因为Reeb流横向到剖面表面。我们的结果还允许我们根据卡拉比不变量推导出(p−1)(q−1)/2的相关Seifert曲面的自然关联类的保面积微分同态的周期轨道的平均作用的上界,而不需要一般性或哈密顿假设。我们的证明利用了结点滤波嵌入接触同源性,这是由Hutchings首先引入和计算的,用于不合理椭球体的标准横向解结,并在我们之前的工作中进一步发展。我们继续发展嵌入式接触同调的非环面方法,并在标准紧三球的嵌入式接触同调链复上建立了关于正T(p,q)环面结的结过滤,其中存在不消失的微分。我们还得到了正横环面结间精确辛配合存在的阻碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信