Modeling the Residual Stress Evolution in Wire-Arc Directed Energy Deposition with Interlayer Machining Interventions

Akshar Kota , Asif Rashid , Shreyes N. Melkote
{"title":"Modeling the Residual Stress Evolution in Wire-Arc Directed Energy Deposition with Interlayer Machining Interventions","authors":"Akshar Kota ,&nbsp;Asif Rashid ,&nbsp;Shreyes N. Melkote","doi":"10.1016/j.procir.2025.02.069","DOIUrl":null,"url":null,"abstract":"<div><div>Wire-Arc Directed Energy Deposition (Wire-Arc DED) is a promising metal additive manufacturing process due to its high deposition rate and ability to produce large parts. However, residual stress and geometric accuracy challenges persist. While interlayer machining in Wire-Arc DED has shown potential to improve geometric accuracy and mechanical properties, its impact on residual stress in the hybrid process remains unexplored. In this regard, developing accurate models is crucial for understanding and optimizing the residual stress in Hybrid Wire-Arc DED. This paper investigates the challenge of predicting the residual stress in Hybrid Wire-Arc DED using the Finite Element Method. Interlayer milling interventions are simulated by modelling material removal as a predominantly geometric effect through element deactivation, excluding the thermo-mechanical effects of cutting. We demonstrate the limitations of this approach through simulations and experiments, highlighting the need for improvements in modelling the residual stress induced by interlayer machining in Hybrid Wire-Arc DED.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"133 ","pages":"Pages 400-405"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125001714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wire-Arc Directed Energy Deposition (Wire-Arc DED) is a promising metal additive manufacturing process due to its high deposition rate and ability to produce large parts. However, residual stress and geometric accuracy challenges persist. While interlayer machining in Wire-Arc DED has shown potential to improve geometric accuracy and mechanical properties, its impact on residual stress in the hybrid process remains unexplored. In this regard, developing accurate models is crucial for understanding and optimizing the residual stress in Hybrid Wire-Arc DED. This paper investigates the challenge of predicting the residual stress in Hybrid Wire-Arc DED using the Finite Element Method. Interlayer milling interventions are simulated by modelling material removal as a predominantly geometric effect through element deactivation, excluding the thermo-mechanical effects of cutting. We demonstrate the limitations of this approach through simulations and experiments, highlighting the need for improvements in modelling the residual stress induced by interlayer machining in Hybrid Wire-Arc DED.
带有层间加工干预的线弧定向能沉积残余应力演变建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信