Effect of tool cavity conditions on damping, chatter mitigation, and surface quality in internally cooled milling tools

Ramazan Hakkı Namlu , Hakan Dogan , Muhammet Ozsoy
{"title":"Effect of tool cavity conditions on damping, chatter mitigation, and surface quality in internally cooled milling tools","authors":"Ramazan Hakkı Namlu ,&nbsp;Hakan Dogan ,&nbsp;Muhammet Ozsoy","doi":"10.1016/j.procir.2025.02.038","DOIUrl":null,"url":null,"abstract":"<div><div>Chatter is a critical factor limiting productivity and efficiency in machining processes. Cutting tools significantly impact chatter stability, as they often serve as the most flexible component. The influence of cutting tools on chatter varies depending on their design and cooling mechanisms. Internally cooled cutting tools, commonly used in industrial applications, have the potential to exhibit distinct damping characteristics due to the presence of internal cavities, differentiating them from conventional solid tools. This study explores the effects of internally cooled milling cutting comparing an empty cavity cutting tool with a tool filled with viscous fluid. The primary objective is to evaluate how these conditions influence the damping of the machining system and their subsequent impact on surface quality, a key outcome sensitive to chatter. Surface topography and roughness measurements were taken after the experiments to assess changes in surface quality. The findings offer valuable insights into the role of internal cooling and fluid properties in not only chatter but also vibration suppressions in milling operations, highlighting their potential to enhance machining performance.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"133 ","pages":"Pages 215-220"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125001374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chatter is a critical factor limiting productivity and efficiency in machining processes. Cutting tools significantly impact chatter stability, as they often serve as the most flexible component. The influence of cutting tools on chatter varies depending on their design and cooling mechanisms. Internally cooled cutting tools, commonly used in industrial applications, have the potential to exhibit distinct damping characteristics due to the presence of internal cavities, differentiating them from conventional solid tools. This study explores the effects of internally cooled milling cutting comparing an empty cavity cutting tool with a tool filled with viscous fluid. The primary objective is to evaluate how these conditions influence the damping of the machining system and their subsequent impact on surface quality, a key outcome sensitive to chatter. Surface topography and roughness measurements were taken after the experiments to assess changes in surface quality. The findings offer valuable insights into the role of internal cooling and fluid properties in not only chatter but also vibration suppressions in milling operations, highlighting their potential to enhance machining performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信