Computational and theoretical aspects of rational parametrization of generalized tubular surfaces

J. William Hoffman , Haohao Wang
{"title":"Computational and theoretical aspects of rational parametrization of generalized tubular surfaces","authors":"J. William Hoffman ,&nbsp;Haohao Wang","doi":"10.1016/j.jaca.2025.100030","DOIUrl":null,"url":null,"abstract":"<div><div>This paper consists of two components - a computational part and a theoretical part. The former targets the computer-aided geometric design of tubular surfaces. The latter focuses on the algebraic geometry of a family of conic curves. At the application level, we provide a straightforward and easy to implement computational algorithm to rationally parametrize generalized real tubular surfaces via moving lines. We discover that syzygies, i.e., moving lines, can be calculated directly from a given implicit equation of a projective conic. Specifically, we describe two linear polynomial vectors in 3-space whose entries are formulated in terms of the coefficients of the given implicit equation of the conic. We then prove that these two vectors are, in fact, a <em>μ</em>-basis, the generators for the syzygy module of the given conic, and furnish the rational parametrization of the given conic. At the theoretical level, we first briefly review the classical projection method for a rational parametrization of a generic non-degenerate conic. This is compared to the syzygy method, i.e., moving lines. We conclude the paper with an illustrative figure that depicts and compares the classical projection method and our moving line method.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"13 ","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827725000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper consists of two components - a computational part and a theoretical part. The former targets the computer-aided geometric design of tubular surfaces. The latter focuses on the algebraic geometry of a family of conic curves. At the application level, we provide a straightforward and easy to implement computational algorithm to rationally parametrize generalized real tubular surfaces via moving lines. We discover that syzygies, i.e., moving lines, can be calculated directly from a given implicit equation of a projective conic. Specifically, we describe two linear polynomial vectors in 3-space whose entries are formulated in terms of the coefficients of the given implicit equation of the conic. We then prove that these two vectors are, in fact, a μ-basis, the generators for the syzygy module of the given conic, and furnish the rational parametrization of the given conic. At the theoretical level, we first briefly review the classical projection method for a rational parametrization of a generic non-degenerate conic. This is compared to the syzygy method, i.e., moving lines. We conclude the paper with an illustrative figure that depicts and compares the classical projection method and our moving line method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信