Enhancing cybersecurity of nonlinear processes via a two-layer control architecture

IF 3 Q2 ENGINEERING, CHEMICAL
Arthur Khodaverdian , Dhruv Gohil , Panagiotis D. Christofides
{"title":"Enhancing cybersecurity of nonlinear processes via a two-layer control architecture","authors":"Arthur Khodaverdian ,&nbsp;Dhruv Gohil ,&nbsp;Panagiotis D. Christofides","doi":"10.1016/j.dche.2025.100233","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a novel two-layer multi-key control architecture to enhance the resilience of nonlinear chemical processes to cyberattacks. The architecture consists of an upper-layer nonlinear controller and a lower-layer of encrypted linear controllers. The nonlinear controllers process unencrypted sensor data to determine optimal control actions, which are then used to estimate the closed-loop state trajectory using a first-principle model of the plant. This trajectory is sampled and mapped to a valid subset before encryption, which can lead to minor inaccuracies. The resulting encrypted state-space data samples are used as set-points for the lower-layer controllers, which can be implemented using encrypted signals, allowing for obfuscation of the computation and transmission of the applied control inputs, thereby enhancing cybersecurity. This study further improves security by taking advantage of the Single-Input-Single-Output nature of some linear control methods to allocate a unique encryption key to each linear controller and its respective sensor data. Two nonlinear chemical process applications, including a benchmark chemical reactor example and one application modeled through the use of Aspen Dynamics, are used to demonstrate the application of the proposed two-layer architecture.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100233"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a novel two-layer multi-key control architecture to enhance the resilience of nonlinear chemical processes to cyberattacks. The architecture consists of an upper-layer nonlinear controller and a lower-layer of encrypted linear controllers. The nonlinear controllers process unencrypted sensor data to determine optimal control actions, which are then used to estimate the closed-loop state trajectory using a first-principle model of the plant. This trajectory is sampled and mapped to a valid subset before encryption, which can lead to minor inaccuracies. The resulting encrypted state-space data samples are used as set-points for the lower-layer controllers, which can be implemented using encrypted signals, allowing for obfuscation of the computation and transmission of the applied control inputs, thereby enhancing cybersecurity. This study further improves security by taking advantage of the Single-Input-Single-Output nature of some linear control methods to allocate a unique encryption key to each linear controller and its respective sensor data. Two nonlinear chemical process applications, including a benchmark chemical reactor example and one application modeled through the use of Aspen Dynamics, are used to demonstrate the application of the proposed two-layer architecture.
通过双层控制架构加强非线性过程的网络安全
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信