Gricelda Godoy-Ortega, Gemma M. Rodríguez-Muñiz, Virginie Lhiaubet-Vallet, Carolina Lorente* and Andrés H. Thomas*,
{"title":"Pterin–Thymidine Adducts: From Their Photochemical Synthesis to Their Photosensitizing Properties","authors":"Gricelda Godoy-Ortega, Gemma M. Rodríguez-Muñiz, Virginie Lhiaubet-Vallet, Carolina Lorente* and Andrés H. Thomas*, ","doi":"10.1021/acs.jpcb.5c0018510.1021/acs.jpcb.5c00185","DOIUrl":null,"url":null,"abstract":"<p >Pterin (Ptr) is the model compound of aromatic pterins, which are efficient photosensitizers present in human skin and are able to oxidize biomolecules upon UVA irradiation. Photosensitization involves chemical alteration of a biomolecule as a result of the initial absorption of radiation by another chemical species, the photosensitizer. Under anaerobic conditions, Ptr reacts with thymine (T) to form photoadducts (T-Ptr). In this work, we present a method to prepare and purify T-Ptr adducts, using 2′-deoxythymidine 5′-monophosphate (dTMP) and single stranded oligonucleotide 5′-d(TTTTT)-3′ (dT<sub>5</sub>), and investigate their photosensitizing properties. Interestingly, the Ptr moiety, when attached to T, retains its photophysical properties. The adduct dTMP-Ptr, upon excitation, forms singlet and triplet excited states, the latter being capable of transferring energy to dissolved O<sub>2</sub> and generating singlet oxygen, with an efficiency similar to Ptr. In air-equilibrated solutions, both dTMP-Ptr and dT<sub>5</sub>-Ptr adducts can photosensitize the oxidation of tryptophan and 2′-deoxyguanosine 5′-monophosphate, two of the main targets of photosensitization in biological systems, with efficiencies close to that of free Ptr. The mechanisms involved in the oxidation of biomolecules can be either type I (electron transfer) or type II (singlet oxygen).</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 13","pages":"3334–3344 3334–3344"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c00185","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pterin (Ptr) is the model compound of aromatic pterins, which are efficient photosensitizers present in human skin and are able to oxidize biomolecules upon UVA irradiation. Photosensitization involves chemical alteration of a biomolecule as a result of the initial absorption of radiation by another chemical species, the photosensitizer. Under anaerobic conditions, Ptr reacts with thymine (T) to form photoadducts (T-Ptr). In this work, we present a method to prepare and purify T-Ptr adducts, using 2′-deoxythymidine 5′-monophosphate (dTMP) and single stranded oligonucleotide 5′-d(TTTTT)-3′ (dT5), and investigate their photosensitizing properties. Interestingly, the Ptr moiety, when attached to T, retains its photophysical properties. The adduct dTMP-Ptr, upon excitation, forms singlet and triplet excited states, the latter being capable of transferring energy to dissolved O2 and generating singlet oxygen, with an efficiency similar to Ptr. In air-equilibrated solutions, both dTMP-Ptr and dT5-Ptr adducts can photosensitize the oxidation of tryptophan and 2′-deoxyguanosine 5′-monophosphate, two of the main targets of photosensitization in biological systems, with efficiencies close to that of free Ptr. The mechanisms involved in the oxidation of biomolecules can be either type I (electron transfer) or type II (singlet oxygen).
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.