David S. Hoffmann, Philipp M. Dohmen, Monja Sokolov, Ulrich Kleinekathöfer and Marcus Elstner*,
{"title":"Exciton Transfer Simulations in a Light-Harvesting 2 Complex Reveal the Transient Delocalization Mechanism","authors":"David S. Hoffmann, Philipp M. Dohmen, Monja Sokolov, Ulrich Kleinekathöfer and Marcus Elstner*, ","doi":"10.1021/acs.jpcb.5c0032010.1021/acs.jpcb.5c00320","DOIUrl":null,"url":null,"abstract":"<p >The striking efficiency of exciton transfer in light-harvesting (LH) complexes has remained a topic of debate since the revision of the long-held role of electronic coherences. To address this issue, we have developed a neural network for the pigments in the LH2 complex of <i>Rhodospirillum molischianum</i> that allows nonadiabatic molecular dynamic (NAMD) simulations of exciton transfer in a coupled quantum mechanical/molecular mechanics (QM/MM) embedding. The calculated exciton occupations are averaged over hundreds of trajectories, each lasting several picoseconds. We have obtained transitions within the B800 and B850 rings that agree well with the experimental results, indicating an incoherent hopping process in the B800 ring and a more delocalized transfer in the B850 subsystem. The reorganization energies and excitonic couplings are comparable to each other, indicating that the “transient delocalization” transport model is the underlying cause of the highly efficient exciton transport in the B850 ring. This phenomenon can be attributed to a localized exciton that shows occasional large delocalization events. Our results indicate that the reason for the striking efficiency is the unusual electronic property of bacteriochlorophyll, manifested in minimal inner and outer sphere reorganization energies.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 13","pages":"3345–3365 3345–3365"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c00320","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The striking efficiency of exciton transfer in light-harvesting (LH) complexes has remained a topic of debate since the revision of the long-held role of electronic coherences. To address this issue, we have developed a neural network for the pigments in the LH2 complex of Rhodospirillum molischianum that allows nonadiabatic molecular dynamic (NAMD) simulations of exciton transfer in a coupled quantum mechanical/molecular mechanics (QM/MM) embedding. The calculated exciton occupations are averaged over hundreds of trajectories, each lasting several picoseconds. We have obtained transitions within the B800 and B850 rings that agree well with the experimental results, indicating an incoherent hopping process in the B800 ring and a more delocalized transfer in the B850 subsystem. The reorganization energies and excitonic couplings are comparable to each other, indicating that the “transient delocalization” transport model is the underlying cause of the highly efficient exciton transport in the B850 ring. This phenomenon can be attributed to a localized exciton that shows occasional large delocalization events. Our results indicate that the reason for the striking efficiency is the unusual electronic property of bacteriochlorophyll, manifested in minimal inner and outer sphere reorganization energies.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.