The Enhanced Proton-Accepting Ability of Bound Water in Poly(vinyl alcohol) Films

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Qin Yu, Siyu Hou, Mengrong Hu, Zheng Li and Jian Luo*, 
{"title":"The Enhanced Proton-Accepting Ability of Bound Water in Poly(vinyl alcohol) Films","authors":"Qin Yu,&nbsp;Siyu Hou,&nbsp;Mengrong Hu,&nbsp;Zheng Li and Jian Luo*,&nbsp;","doi":"10.1021/acs.jpcb.5c0086110.1021/acs.jpcb.5c00861","DOIUrl":null,"url":null,"abstract":"<p >Poly(vinyl alcohol) (PVA) films have been widely used as flexible matrixes in advanced optical materials. Most studies concern the rigidification strategy of PVA films, while the physicochemical properties of inside bound water are ignored. In this study, we have employed lumichrome as the fluorescent probe to explore the acid–base property of bound water, which was demonstrated to exhibit an enhanced proton-accepting ability than bulk water, evidenced by the promoted deprotonation of lumichrome in the ground state. Decreasing the water content in a PVA film is demonstrated to further improve the proton-accepting ability. Different from that in bulk solution, a selective prototropism of lumichrome is determined in PVA films, which is induced by the formation of an anchored lumichrome–PVA complex through three hydrogen bonds. This work first points out the enhanced proton-accepting ability of bound water in PVA films, opening a new avenue for the development of flexible optical materials based on proton transfer.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 13","pages":"3546–3552 3546–3552"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c00861","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(vinyl alcohol) (PVA) films have been widely used as flexible matrixes in advanced optical materials. Most studies concern the rigidification strategy of PVA films, while the physicochemical properties of inside bound water are ignored. In this study, we have employed lumichrome as the fluorescent probe to explore the acid–base property of bound water, which was demonstrated to exhibit an enhanced proton-accepting ability than bulk water, evidenced by the promoted deprotonation of lumichrome in the ground state. Decreasing the water content in a PVA film is demonstrated to further improve the proton-accepting ability. Different from that in bulk solution, a selective prototropism of lumichrome is determined in PVA films, which is induced by the formation of an anchored lumichrome–PVA complex through three hydrogen bonds. This work first points out the enhanced proton-accepting ability of bound water in PVA films, opening a new avenue for the development of flexible optical materials based on proton transfer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信