{"title":"Global warming potential of farming systems across England: possible mitigation and co-benefits for water quality and biodiversity","authors":"Yusheng Zhang, Adrian L. Collins","doi":"10.1007/s13593-025-01015-4","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture is a key contributor to gaseous emissions causing climate change, the degradation of water quality, and biodiversity loss. The extant climate change crisis is driving a focus on mitigating agricultural gaseous emissions, but wider policy objectives, beyond net zero, mean that evidence on the potential co-benefits or trade-offs associated with on-farm intervention is warranted. For novelty, aggregated data on farm structure and spatial distribution for different farm types were integrated with high-resolution data on the natural environment to generate representative model farms. Accounting for existing mitigation effects, the Catchment Systems Model was then used to quantify global warming potential, emissions to water, and other outcomes for water management catchments across England under both business-as-usual and a maximum technically feasible mitigation potential scenario. Mapped spatial patterns were overlain with the distributions of areas experiencing poor water quality and biodiversity loss to examine potential co-benefits. The median business-as-usual GWP20 and GWP100, excluding embedded emissions, were estimated to be 4606 kg CO<sub>2</sub> eq. ha<sup>−1</sup> (inter-quartile range 4240 kg CO<sub>2</sub> eq. ha−<sup>1</sup>) and 2334 kg CO<sub>2</sub> eq. ha<sup>−1</sup> (inter-quartile range 1462 kg CO<sub>2</sub> eq. ha<sup>−1</sup>), respectively. The ratios of business-as-usual GHG emissions to monetized farm production ranged between 0.58 and 8.89 kg CO<sub>2</sub> eq. £<sup>−1</sup> for GWP20, compared with 0.53–3.99 kg CO<sub>2</sub> eq. £<sup>−1</sup> for GWP100. The maximum mitigation potentials ranged between 17 and 30% for GWP20 and 19-27% for GWP100 with both corresponding medians estimated to be ~24%. Here, we show for the first time that the co-benefits for water quality associated with reductions in phosphorus and sediment loss were both equivalent to around a 34% reduction, relative to business-as-usual, in specific management catchment reporting units where excess water pollutant loads were identified. Several mitigation measures included in the mitigation scenario were also identified as having the potential to deliver co-benefits for terrestrial biodiversity.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"45 2","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-025-01015-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-025-01015-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture is a key contributor to gaseous emissions causing climate change, the degradation of water quality, and biodiversity loss. The extant climate change crisis is driving a focus on mitigating agricultural gaseous emissions, but wider policy objectives, beyond net zero, mean that evidence on the potential co-benefits or trade-offs associated with on-farm intervention is warranted. For novelty, aggregated data on farm structure and spatial distribution for different farm types were integrated with high-resolution data on the natural environment to generate representative model farms. Accounting for existing mitigation effects, the Catchment Systems Model was then used to quantify global warming potential, emissions to water, and other outcomes for water management catchments across England under both business-as-usual and a maximum technically feasible mitigation potential scenario. Mapped spatial patterns were overlain with the distributions of areas experiencing poor water quality and biodiversity loss to examine potential co-benefits. The median business-as-usual GWP20 and GWP100, excluding embedded emissions, were estimated to be 4606 kg CO2 eq. ha−1 (inter-quartile range 4240 kg CO2 eq. ha−1) and 2334 kg CO2 eq. ha−1 (inter-quartile range 1462 kg CO2 eq. ha−1), respectively. The ratios of business-as-usual GHG emissions to monetized farm production ranged between 0.58 and 8.89 kg CO2 eq. £−1 for GWP20, compared with 0.53–3.99 kg CO2 eq. £−1 for GWP100. The maximum mitigation potentials ranged between 17 and 30% for GWP20 and 19-27% for GWP100 with both corresponding medians estimated to be ~24%. Here, we show for the first time that the co-benefits for water quality associated with reductions in phosphorus and sediment loss were both equivalent to around a 34% reduction, relative to business-as-usual, in specific management catchment reporting units where excess water pollutant loads were identified. Several mitigation measures included in the mitigation scenario were also identified as having the potential to deliver co-benefits for terrestrial biodiversity.
期刊介绍:
Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences.
ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels.
Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.