Computational Exploration of Innovative Lead-Free DPs X2CdZnCl6 (X = Na and K) DFT Analysis of Optoelectronic, Mechanical and Thermoelectric Performance

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Sonia Chebouki, Ouarda Nemiri, Faycal Oumelaz, Djamel Boudjaadar, Akila Boumaza, Rabab Benredouane, Şule Uğur, A. K. Kushwaha, Gökay Uğur
{"title":"Computational Exploration of Innovative Lead-Free DPs X2CdZnCl6 (X = Na and K) DFT Analysis of Optoelectronic, Mechanical and Thermoelectric Performance","authors":"Sonia Chebouki, Ouarda Nemiri, Faycal Oumelaz, Djamel Boudjaadar, Akila Boumaza, Rabab Benredouane, Şule Uğur, A. K. Kushwaha, Gökay Uğur","doi":"10.1002/adts.202401540","DOIUrl":null,"url":null,"abstract":"Based on DFT computation, the physical properties of newlead-free double perovskites (DPs) X<sub>2</sub>CdZnCl<sub>6</sub> (X = Na and K) is carried out within WIEN2K software. The measured formation energy (ΔE<sub>f</sub>) and tolerance factor indicate the cubic structure stabilities of investigated materials. The lattice parameters of the compounds Na<sub>2</sub>CdZnCl<sub>6</sub> and K<sub>2</sub>CdZnCl<sub>6</sub> are equal to 9.98 A° and 10.05 A°, respectively. The examination of the electronic structure through nKTB-mBJ demonstrates that lead free DPs X<sub>2</sub>CdZnCl<sub>6</sub> (X = Na and K) exhibit semiconducting behavior with direct bandgap energy. The analysis of optical parameters reveal that the examined compounds have a stronger absorption property in UV region and make them well suited for photovoltaic devices and next-generation technologies. Additionally, using BoltzTrap code, the thermoelectric characteristics are thoroughly examined. The highest Seebeck coefficient values 218.32 and 254.29 µV K<sup>−1</sup> for X = Na and K, respectively. According to calculations, the maximum ZT values of 0.7 for Na<sub>2</sub>CdZnCl<sub>6</sub> and 0.73 for K<sub>2</sub>CdZnCl<sub>6</sub> indicate their potential as promising materials for thermoelectric devices. The acquired figure of merit (ZT) values indictes that examined lead free DPs X<sub>2</sub>CdZnCl<sub>6</sub> (X = Na and K) exhibit potential for implementation in thermoelectric devices.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401540","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Based on DFT computation, the physical properties of newlead-free double perovskites (DPs) X2CdZnCl6 (X = Na and K) is carried out within WIEN2K software. The measured formation energy (ΔEf) and tolerance factor indicate the cubic structure stabilities of investigated materials. The lattice parameters of the compounds Na2CdZnCl6 and K2CdZnCl6 are equal to 9.98 A° and 10.05 A°, respectively. The examination of the electronic structure through nKTB-mBJ demonstrates that lead free DPs X2CdZnCl6 (X = Na and K) exhibit semiconducting behavior with direct bandgap energy. The analysis of optical parameters reveal that the examined compounds have a stronger absorption property in UV region and make them well suited for photovoltaic devices and next-generation technologies. Additionally, using BoltzTrap code, the thermoelectric characteristics are thoroughly examined. The highest Seebeck coefficient values 218.32 and 254.29 µV K−1 for X = Na and K, respectively. According to calculations, the maximum ZT values of 0.7 for Na2CdZnCl6 and 0.73 for K2CdZnCl6 indicate their potential as promising materials for thermoelectric devices. The acquired figure of merit (ZT) values indictes that examined lead free DPs X2CdZnCl6 (X = Na and K) exhibit potential for implementation in thermoelectric devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信