Taming a Silent Killer: Uncovering the Role of Excited States and Uncoordinated Selenium Moieties in the CO Photorelease Mechanism of Manganese(I) Carbonyl Compounds

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Vinícius Acir Glitz, Daniele Cocco Durigon, Andre Luiz Amorim, Yara S. Ricken, Adailton J Bortoluzzi, Antonio Luiz Braga, Ebbe Nordlander, Giovanni Finoto Caramori, Rosely Peralta
{"title":"Taming a Silent Killer: Uncovering the Role of Excited States and Uncoordinated Selenium Moieties in the CO Photorelease Mechanism of Manganese(I) Carbonyl Compounds","authors":"Vinícius Acir Glitz, Daniele Cocco Durigon, Andre Luiz Amorim, Yara S. Ricken, Adailton J Bortoluzzi, Antonio Luiz Braga, Ebbe Nordlander, Giovanni Finoto Caramori, Rosely Peralta","doi":"10.1039/d5qi00162e","DOIUrl":null,"url":null,"abstract":"Manganese carbonyl compounds can release CO when exposed to light, potentially becoming photochemically activated CO-releasing molecules (photoCORMs). Several studies have demonstrated the behavior in the ground state when irradiated with light. However, much remains to be discovered about the chemistry of photoCORMs with uncoordinated ligand moieties and the excited states of these compounds. This research fills that gap via the synthesis, characterization, and study of the excited states of five manganese(I) complexes containing a potentially bi- or tridentate ligand framework (κ<small><sup>n</sup></small>- Se,N,Se; n=2,3). The obtained compounds, [Mn(κ<small><sup>2</sup></small>-L)(CO)<small><sub>3</sub></small>Br], retain a uncoordinated selenium-donor moiety. CO-release assays using violet light revealed the formation of a biscarbonyl intermediate. TD-DFT calculations showed that in [Mn(κ<small><sup>2</sup></small>-L)(CO)<small><sub>3</sub></small>Br], the first two excited states are involved. Generalized Kohn-Sham energy decomposition analysis indicated that the strongest metal-carbonyl interaction in the ground state (carbonyl trans to bromide) became the weakest in the excited state. DFT calculations confirmed the coordination of free selenium upon CO loss, forming [Mn(κ<small><sup>3</sup></small>-L)(CO)<small><sub>2</sub></small>Br], for which two configurational isomers (meridional and facial) may occur, with the first being more favored. The total interaction energies of the two carbonyls are similar, indicating the release of both. The Potential Energy curves indicate that the excited states involved are dissociative in nature.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"73 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00162e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese carbonyl compounds can release CO when exposed to light, potentially becoming photochemically activated CO-releasing molecules (photoCORMs). Several studies have demonstrated the behavior in the ground state when irradiated with light. However, much remains to be discovered about the chemistry of photoCORMs with uncoordinated ligand moieties and the excited states of these compounds. This research fills that gap via the synthesis, characterization, and study of the excited states of five manganese(I) complexes containing a potentially bi- or tridentate ligand framework (κn- Se,N,Se; n=2,3). The obtained compounds, [Mn(κ2-L)(CO)3Br], retain a uncoordinated selenium-donor moiety. CO-release assays using violet light revealed the formation of a biscarbonyl intermediate. TD-DFT calculations showed that in [Mn(κ2-L)(CO)3Br], the first two excited states are involved. Generalized Kohn-Sham energy decomposition analysis indicated that the strongest metal-carbonyl interaction in the ground state (carbonyl trans to bromide) became the weakest in the excited state. DFT calculations confirmed the coordination of free selenium upon CO loss, forming [Mn(κ3-L)(CO)2Br], for which two configurational isomers (meridional and facial) may occur, with the first being more favored. The total interaction energies of the two carbonyls are similar, indicating the release of both. The Potential Energy curves indicate that the excited states involved are dissociative in nature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信