Qian Zhao, Ancha Baranova, Dongming Liu, Hongbao Cao, Fuquan Zhang
{"title":"Bidirectional causal associations between plasma metabolites and bipolar disorder","authors":"Qian Zhao, Ancha Baranova, Dongming Liu, Hongbao Cao, Fuquan Zhang","doi":"10.1038/s41380-025-02977-3","DOIUrl":null,"url":null,"abstract":"<p>Altered levels of human plasma metabolites have been implicated in the etiology of bipolar disorder (BD). However, the causality between metabolites and the disease was not well described. We performed a bidirectional metabolome-wide Mendelian randomization (MR) analysis to evaluate the potential causal relationships between 871 plasma metabolites and BD. We used DrugBank and ChEMBL to evaluate whether related metabolites are potential therapeutic targets. Finally, Bayesian colocalization analysis was performed to identify shared genomic loci BD and identified metabolites. Our MR results showed that six metabolites were significantly associated with a reduced risk of BD, including arachidonate (20:4n6) (OR: 0.90, 95% CI: 0.84–0.95) and sphingomyelin (d18:2/24:1, d18:1/24:2) (OR: 0.92, 95% CI: 0.87–0.96), while five metabolites were significantly associated with an increased risk of BD, including 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) (OR: 1.09, 95% CI: 1.05–1.13). However, our reverse MR analysis showed that BD was not associated with the levels of any metabolite. Additionally, the leave-one-out analysis revealed SNPs within chromosome 11 loci harboring <i>MYRF</i>, <i>FADS1</i>, and <i>FADS2</i> as ones with the potential to influence partial causal effects. Druggability evaluation showed that 10 of the BD-related metabolites, such as sphingomyelin and cytidine, have been targeted by pharmacologic intervention. Colocalization analysis highlighted one colocalized region (chromosome 11q12) shared by 11 metabolites and BD and pointed to some genes as possible players, including <i>FADS1</i>, <i>FADS2</i>, <i>FADS3</i>, and <i>SYT7</i>. Our study supported a causal role of plasma metabolites in the susceptibility to BD, and the identified metabolites may provide a new avenue for the prevention and treatment of BD.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"64 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02977-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Altered levels of human plasma metabolites have been implicated in the etiology of bipolar disorder (BD). However, the causality between metabolites and the disease was not well described. We performed a bidirectional metabolome-wide Mendelian randomization (MR) analysis to evaluate the potential causal relationships between 871 plasma metabolites and BD. We used DrugBank and ChEMBL to evaluate whether related metabolites are potential therapeutic targets. Finally, Bayesian colocalization analysis was performed to identify shared genomic loci BD and identified metabolites. Our MR results showed that six metabolites were significantly associated with a reduced risk of BD, including arachidonate (20:4n6) (OR: 0.90, 95% CI: 0.84–0.95) and sphingomyelin (d18:2/24:1, d18:1/24:2) (OR: 0.92, 95% CI: 0.87–0.96), while five metabolites were significantly associated with an increased risk of BD, including 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) (OR: 1.09, 95% CI: 1.05–1.13). However, our reverse MR analysis showed that BD was not associated with the levels of any metabolite. Additionally, the leave-one-out analysis revealed SNPs within chromosome 11 loci harboring MYRF, FADS1, and FADS2 as ones with the potential to influence partial causal effects. Druggability evaluation showed that 10 of the BD-related metabolites, such as sphingomyelin and cytidine, have been targeted by pharmacologic intervention. Colocalization analysis highlighted one colocalized region (chromosome 11q12) shared by 11 metabolites and BD and pointed to some genes as possible players, including FADS1, FADS2, FADS3, and SYT7. Our study supported a causal role of plasma metabolites in the susceptibility to BD, and the identified metabolites may provide a new avenue for the prevention and treatment of BD.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.