Bidirectional causal associations between plasma metabolites and bipolar disorder

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qian Zhao, Ancha Baranova, Dongming Liu, Hongbao Cao, Fuquan Zhang
{"title":"Bidirectional causal associations between plasma metabolites and bipolar disorder","authors":"Qian Zhao, Ancha Baranova, Dongming Liu, Hongbao Cao, Fuquan Zhang","doi":"10.1038/s41380-025-02977-3","DOIUrl":null,"url":null,"abstract":"<p>Altered levels of human plasma metabolites have been implicated in the etiology of bipolar disorder (BD). However, the causality between metabolites and the disease was not well described. We performed a bidirectional metabolome-wide Mendelian randomization (MR) analysis to evaluate the potential causal relationships between 871 plasma metabolites and BD. We used DrugBank and ChEMBL to evaluate whether related metabolites are potential therapeutic targets. Finally, Bayesian colocalization analysis was performed to identify shared genomic loci BD and identified metabolites. Our MR results showed that six metabolites were significantly associated with a reduced risk of BD, including arachidonate (20:4n6) (OR: 0.90, 95% CI: 0.84–0.95) and sphingomyelin (d18:2/24:1, d18:1/24:2) (OR: 0.92, 95% CI: 0.87–0.96), while five metabolites were significantly associated with an increased risk of BD, including 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) (OR: 1.09, 95% CI: 1.05–1.13). However, our reverse MR analysis showed that BD was not associated with the levels of any metabolite. Additionally, the leave-one-out analysis revealed SNPs within chromosome 11 loci harboring <i>MYRF</i>, <i>FADS1</i>, and <i>FADS2</i> as ones with the potential to influence partial causal effects. Druggability evaluation showed that 10 of the BD-related metabolites, such as sphingomyelin and cytidine, have been targeted by pharmacologic intervention. Colocalization analysis highlighted one colocalized region (chromosome 11q12) shared by 11 metabolites and BD and pointed to some genes as possible players, including <i>FADS1</i>, <i>FADS2</i>, <i>FADS3</i>, and <i>SYT7</i>. Our study supported a causal role of plasma metabolites in the susceptibility to BD, and the identified metabolites may provide a new avenue for the prevention and treatment of BD.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"64 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02977-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Altered levels of human plasma metabolites have been implicated in the etiology of bipolar disorder (BD). However, the causality between metabolites and the disease was not well described. We performed a bidirectional metabolome-wide Mendelian randomization (MR) analysis to evaluate the potential causal relationships between 871 plasma metabolites and BD. We used DrugBank and ChEMBL to evaluate whether related metabolites are potential therapeutic targets. Finally, Bayesian colocalization analysis was performed to identify shared genomic loci BD and identified metabolites. Our MR results showed that six metabolites were significantly associated with a reduced risk of BD, including arachidonate (20:4n6) (OR: 0.90, 95% CI: 0.84–0.95) and sphingomyelin (d18:2/24:1, d18:1/24:2) (OR: 0.92, 95% CI: 0.87–0.96), while five metabolites were significantly associated with an increased risk of BD, including 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) (OR: 1.09, 95% CI: 1.05–1.13). However, our reverse MR analysis showed that BD was not associated with the levels of any metabolite. Additionally, the leave-one-out analysis revealed SNPs within chromosome 11 loci harboring MYRF, FADS1, and FADS2 as ones with the potential to influence partial causal effects. Druggability evaluation showed that 10 of the BD-related metabolites, such as sphingomyelin and cytidine, have been targeted by pharmacologic intervention. Colocalization analysis highlighted one colocalized region (chromosome 11q12) shared by 11 metabolites and BD and pointed to some genes as possible players, including FADS1, FADS2, FADS3, and SYT7. Our study supported a causal role of plasma metabolites in the susceptibility to BD, and the identified metabolites may provide a new avenue for the prevention and treatment of BD.

Abstract Image

血浆代谢物与双相情感障碍之间的双向因果关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信