Jun Ma, Xiangyu Yang, Yanan Li, Xin Zhang, Kai Liu, Yong Peng, Si Wang, Rufeng Shi, Xingwei Huo, Xueting Liu, Xinran Li, Runyu Ye, Zhipeng Zhang, Changqiang Yang, Lu Liu, Dan Gao, Shanshan Jia, Lirong Sun, Xianghao Zuo, Qingtao Meng, Xiaoping Chen
{"title":"C/EBPβ activation in vascular smooth muscle cells promotes hyperlipidemia-induced phenotypic transition and arterial stiffness","authors":"Jun Ma, Xiangyu Yang, Yanan Li, Xin Zhang, Kai Liu, Yong Peng, Si Wang, Rufeng Shi, Xingwei Huo, Xueting Liu, Xinran Li, Runyu Ye, Zhipeng Zhang, Changqiang Yang, Lu Liu, Dan Gao, Shanshan Jia, Lirong Sun, Xianghao Zuo, Qingtao Meng, Xiaoping Chen","doi":"10.1038/s41392-025-02196-w","DOIUrl":null,"url":null,"abstract":"<p>Arterial stiffness is a critical factor in cardiovascular and cerebrovascular events, yet clinical practice lacks specific therapeutic targets and biomarkers for its assessment. Hyperlipidemia closely correlates with arterial stiffness, and we observed elevated CCAAT/enhancer-binding protein β (C/EBPβ) expression in atherosclerotic mouse arterial walls. As the arterial medial layer predominantly consists of vascular smooth muscle cells (VSMCs), C/EBPβ‘s role in VSMCs under hyperlipidemia remains unclear. Our findings demonstrate that cholesterol-induced phenotypic transition of contractile VSMCs to macrophage-like cells coincides with C/EBPβ upregulation and activation. The activation of C/EBPβ is closely related to cellular assembly and organization, regulating the cytoskeleton via Disheveled-associated activator of morphogenesis 1 (Daam1). Conditional knockout of C/EBPβ in VSMCs of ApoE<sup>−/−</sup> mice alleviated hyperlipidemia-induced vascular remodeling and reduced the elevation of aortic pulse wave velocity. Additionally, C/EBPβ-regulated cytokine platelet-derived growth factor-CC (PDGF-CC) is correlated with brachial-ankle pulse wave velocity in humans. These results indicate that the activation of C/EBPβ promotes the transition of VSMCs from a contractile phenotype to a macrophage-like phenotype by regulating morphological changes, and C/EBPβ activation contributes to hyperlipidemia-induced arterial stiffness. PDGF-CC exhibited a significant association with arterial stiffness and may serve as a promising indicator of arterial stiffness in humans. Our study reveals molecular mechanisms behind hyperlipidemia-induced arterial stiffness and provides potential therapeutic targets and biomarkers.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"104 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02196-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arterial stiffness is a critical factor in cardiovascular and cerebrovascular events, yet clinical practice lacks specific therapeutic targets and biomarkers for its assessment. Hyperlipidemia closely correlates with arterial stiffness, and we observed elevated CCAAT/enhancer-binding protein β (C/EBPβ) expression in atherosclerotic mouse arterial walls. As the arterial medial layer predominantly consists of vascular smooth muscle cells (VSMCs), C/EBPβ‘s role in VSMCs under hyperlipidemia remains unclear. Our findings demonstrate that cholesterol-induced phenotypic transition of contractile VSMCs to macrophage-like cells coincides with C/EBPβ upregulation and activation. The activation of C/EBPβ is closely related to cellular assembly and organization, regulating the cytoskeleton via Disheveled-associated activator of morphogenesis 1 (Daam1). Conditional knockout of C/EBPβ in VSMCs of ApoE−/− mice alleviated hyperlipidemia-induced vascular remodeling and reduced the elevation of aortic pulse wave velocity. Additionally, C/EBPβ-regulated cytokine platelet-derived growth factor-CC (PDGF-CC) is correlated with brachial-ankle pulse wave velocity in humans. These results indicate that the activation of C/EBPβ promotes the transition of VSMCs from a contractile phenotype to a macrophage-like phenotype by regulating morphological changes, and C/EBPβ activation contributes to hyperlipidemia-induced arterial stiffness. PDGF-CC exhibited a significant association with arterial stiffness and may serve as a promising indicator of arterial stiffness in humans. Our study reveals molecular mechanisms behind hyperlipidemia-induced arterial stiffness and provides potential therapeutic targets and biomarkers.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.