{"title":"Small open reading frame-encoded microproteins in cancer: identification, biological functions and clinical significance","authors":"Tingting Zhang, Zhang Li, Jiao Li, Yong Peng","doi":"10.1186/s12943-025-02278-x","DOIUrl":null,"url":null,"abstract":"The human genome harbors approximately twenty thousand protein-coding genes, and a significant portion of life science research focuses on elucidating their functions and the underlying mechanisms. Recent studies have revealed that small open reading frame (sORF), originating from non-coding RNAs or the 5’ leader sequences of messenger RNAs, can be translated into small peptides called microproteins through cap-dependent or cap-independent mechanisms. These microproteins interact with diverse molecular partners to modulate gene expression at multiple regulatory levels, thereby playing critical roles in various biological processes. Notably, sORF-encoded microproteins exhibit aberrant expression patterns in cancer and are implicated in tumor initiation and progression, expanding our understanding of cancer biology. In this review, we introduce the translational mechanisms and identification methods of microproteins, summarize their dysregulation in cancer and their biological functions in regulating gene expression, and emphasize their roles in driving hallmark events of cancer. Furthermore, we discuss their clinical significance as diagnostic and prognostic biomarkers, as well as therapeutic targets.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"3 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02278-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human genome harbors approximately twenty thousand protein-coding genes, and a significant portion of life science research focuses on elucidating their functions and the underlying mechanisms. Recent studies have revealed that small open reading frame (sORF), originating from non-coding RNAs or the 5’ leader sequences of messenger RNAs, can be translated into small peptides called microproteins through cap-dependent or cap-independent mechanisms. These microproteins interact with diverse molecular partners to modulate gene expression at multiple regulatory levels, thereby playing critical roles in various biological processes. Notably, sORF-encoded microproteins exhibit aberrant expression patterns in cancer and are implicated in tumor initiation and progression, expanding our understanding of cancer biology. In this review, we introduce the translational mechanisms and identification methods of microproteins, summarize their dysregulation in cancer and their biological functions in regulating gene expression, and emphasize their roles in driving hallmark events of cancer. Furthermore, we discuss their clinical significance as diagnostic and prognostic biomarkers, as well as therapeutic targets.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.