{"title":"Reliable Service Recommendation: A Multi-Modal Adversarial Method for Personalized Recommendation Under Uncertain Missing Modalities","authors":"Junyang Chen;Ruohan Yang;Jingcai Guo;Huan Wang;Kaishun Wu;Liangjie Zhang","doi":"10.1109/TSC.2025.3556640","DOIUrl":null,"url":null,"abstract":"Personalized recommendation is of paramount importance in online content platforms like Kuai and Tencent. To ensure accurate recommendations, it is crucial to consider multi-modal information in both items and user-user/item interactions. While existing works on multimedia recommendation have made strides in leveraging multi-modal contents to enrich item representations, many of them overlook the practical scenario of multiple modality missing. As a result, the performance of recommendation systems can be significantly compromised in such cases. In this paper, we introduce a novel multi-modal adversarial method called <inline-formula><tex-math>$MMAM$</tex-math></inline-formula>, which aims to provide reliable personalized recommendation services even in the presence of uncertain missing modalities. The core idea behind <inline-formula><tex-math>$MMAM$</tex-math></inline-formula> is to design a generator that can effectively encode both user-user/item interactions and multi-modal contents, taking into account various missing cases. The generator is trained to learn transferable features from different combinations of missing modalities in order to deceive a discriminative classifier. Additionally, we propose a modal discriminator that can classify the missing cases of multi-modalities, further enhancing the capability of the model. Moreover, a well-equipped predictor utilizes the transferable features to predict potential user interests. To improve the prediction accuracy, we design a type discriminator that enhances the classification of link types. By employing a mini-max game between the generator and the discriminators, <inline-formula><tex-math>$MMAM$</tex-math></inline-formula> successfully obtains transferable features that encompass multi-modal contents, even when facing uncertain missing modalities. We conduct extensive experiments on industrial datasets, including Kuai and Tencent. Comparing with state-of-the-art approaches, MMAM achieves improvements in personalized recommendation tasks under uncertain missing modalities. MMAM holds promise for enhancing multi-modal personalized recommendations in real-world applications.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 3","pages":"1724-1738"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10946219/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Personalized recommendation is of paramount importance in online content platforms like Kuai and Tencent. To ensure accurate recommendations, it is crucial to consider multi-modal information in both items and user-user/item interactions. While existing works on multimedia recommendation have made strides in leveraging multi-modal contents to enrich item representations, many of them overlook the practical scenario of multiple modality missing. As a result, the performance of recommendation systems can be significantly compromised in such cases. In this paper, we introduce a novel multi-modal adversarial method called $MMAM$, which aims to provide reliable personalized recommendation services even in the presence of uncertain missing modalities. The core idea behind $MMAM$ is to design a generator that can effectively encode both user-user/item interactions and multi-modal contents, taking into account various missing cases. The generator is trained to learn transferable features from different combinations of missing modalities in order to deceive a discriminative classifier. Additionally, we propose a modal discriminator that can classify the missing cases of multi-modalities, further enhancing the capability of the model. Moreover, a well-equipped predictor utilizes the transferable features to predict potential user interests. To improve the prediction accuracy, we design a type discriminator that enhances the classification of link types. By employing a mini-max game between the generator and the discriminators, $MMAM$ successfully obtains transferable features that encompass multi-modal contents, even when facing uncertain missing modalities. We conduct extensive experiments on industrial datasets, including Kuai and Tencent. Comparing with state-of-the-art approaches, MMAM achieves improvements in personalized recommendation tasks under uncertain missing modalities. MMAM holds promise for enhancing multi-modal personalized recommendations in real-world applications.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.