Inverse Particle Filter

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Himali Singh;Arpan Chattopadhyay;Kumar Vijay Mishra
{"title":"Inverse Particle Filter","authors":"Himali Singh;Arpan Chattopadhyay;Kumar Vijay Mishra","doi":"10.1109/TSP.2025.3556702","DOIUrl":null,"url":null,"abstract":"In cognitive systems, recent emphasis has been placed on studying the cognitive processes of the subject whose behavior was the primary focus of the system’s cognitive response. This approach, known as <italic>inverse cognition</i>, arises in counter-adversarial applications and has motivated the development of inverse Bayesian filters. In this context, a cognitive adversary, such as a radar, uses a forward Bayesian filter to track its target of interest. An inverse filter is then employed to infer the adversary’s estimate of the target’s or defender’s state. Previous studies have addressed this inverse filtering problem by introducing methods like the inverse Kalman filter (KF), inverse extended KF, and inverse unscented KF. However, these filters typically assume additive Gaussian noise models and/or rely on local approximations of non-linear dynamics at the state estimates, limiting their practical application. In contrast, this paper adopts a global filtering approach and presents the development of an inverse particle filter (I-PF). The particle filter framework employs Monte Carlo methods to approximate arbitrary posterior distributions. Moreover, under mild system-level conditions, the proposed I-PF demonstrates convergence to the optimal inverse filter. Additionally, we propose the differentiable I-PF to address scenarios where system information is unknown to the defender. Using the recursive Cramér-Rao lower bound and non-credibility index, our numerical experiments for different systems demonstrate the estimation performance and time complexity of the proposed filter.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1922-1938"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946835/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In cognitive systems, recent emphasis has been placed on studying the cognitive processes of the subject whose behavior was the primary focus of the system’s cognitive response. This approach, known as inverse cognition, arises in counter-adversarial applications and has motivated the development of inverse Bayesian filters. In this context, a cognitive adversary, such as a radar, uses a forward Bayesian filter to track its target of interest. An inverse filter is then employed to infer the adversary’s estimate of the target’s or defender’s state. Previous studies have addressed this inverse filtering problem by introducing methods like the inverse Kalman filter (KF), inverse extended KF, and inverse unscented KF. However, these filters typically assume additive Gaussian noise models and/or rely on local approximations of non-linear dynamics at the state estimates, limiting their practical application. In contrast, this paper adopts a global filtering approach and presents the development of an inverse particle filter (I-PF). The particle filter framework employs Monte Carlo methods to approximate arbitrary posterior distributions. Moreover, under mild system-level conditions, the proposed I-PF demonstrates convergence to the optimal inverse filter. Additionally, we propose the differentiable I-PF to address scenarios where system information is unknown to the defender. Using the recursive Cramér-Rao lower bound and non-credibility index, our numerical experiments for different systems demonstrate the estimation performance and time complexity of the proposed filter.
逆粒子滤波
在认知系统中,最近的重点是研究主体的认知过程,主体的行为是系统认知反应的主要焦点。这种被称为逆认知的方法出现在反对抗应用中,并推动了逆贝叶斯滤波器的发展。在这种情况下,认知对手(如雷达)使用前向贝叶斯过滤器来跟踪其感兴趣的目标。然后使用逆滤波器来推断对手对目标或防御者状态的估计。以前的研究通过引入逆卡尔曼滤波(KF)、逆扩展KF和逆无气味KF等方法来解决这个反滤波问题。然而,这些滤波器通常假设加性高斯噪声模型和/或依赖于非线性动力学在状态估计的局部近似,限制了它们的实际应用。相反,本文采用全局滤波方法,并提出了逆粒子滤波器(I-PF)的发展。粒子滤波框架采用蒙特卡罗方法逼近任意后验分布。此外,在温和的系统级条件下,所提出的I-PF对最优逆滤波器具有收敛性。此外,我们提出了可微分I-PF来解决防御者不知道系统信息的情况。利用递归cram - rao下界和非信度指标,对不同系统进行了数值实验,验证了该滤波器的估计性能和时间复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信