{"title":"MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction","authors":"Luhui Cai;Weiming Zeng;Hongyu Chen;Hua Zhang;Yueyang Li;Yu Feng;Hongjie Yan;Lingbin Bian;Wai Ting Siok;Nizhuan Wang","doi":"10.1109/TMI.2025.3556420","DOIUrl":null,"url":null,"abstract":"Graph deep learning (GDL) has demonstrated impressive performance in predicting population-based brain disorders (BDs) through the integration of both imaging and non-imaging data. However, the effectiveness of GDL-based methods heavily depends on the quality of modeling multi-modal population graphs and tends to degrade as the graph scale increases. Moreover, these methods often limit interactions between imaging and non-imaging data to node-edge interactions within the graph, overlooking complex inter-modal correlations and resulting in suboptimal outcomes. To address these challenges, we propose MM-GTUNets, an end-to-end Graph Transformer-based multi-modal graph deep learning (MMGDL) framework designed for large-scale brain disorders prediction. To effectively utilize rich multi-modal disease-related information, we introduce <underline>M</u>odality <underline>R</u>eward <underline>R</u>epresentation <underline>L</u>earning (MRRL), which dynamically constructs population graphs using an Affinity Metric Reward System (AMRS). We also employ a variational autoencoder to reconstruct latent representations of non-imaging features aligned with imaging features. Based on this, we introduce <underline>A</u>daptive <underline>C</u>ross-<underline>M</u>odal <underline>G</u>raph <underline>L</u>earning (ACMGL), which captures critical modality-specific and modality-shared features through a unified GTUNet encoder, taking advantages of Graph UNet and Graph Transformer, along with a feature fusion module. We validated our method on two public multi-modal datasets ABIDE and ADHD-200, demonstrating its superior performance in diagnosing BDs. Our code is available at <uri>https://github.com/NZWANG/MM-GTUNets</uri><uri>https://github.com/NZWANG/MM-GTUNets</uri>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 9","pages":"3705-3716"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10946209/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Graph deep learning (GDL) has demonstrated impressive performance in predicting population-based brain disorders (BDs) through the integration of both imaging and non-imaging data. However, the effectiveness of GDL-based methods heavily depends on the quality of modeling multi-modal population graphs and tends to degrade as the graph scale increases. Moreover, these methods often limit interactions between imaging and non-imaging data to node-edge interactions within the graph, overlooking complex inter-modal correlations and resulting in suboptimal outcomes. To address these challenges, we propose MM-GTUNets, an end-to-end Graph Transformer-based multi-modal graph deep learning (MMGDL) framework designed for large-scale brain disorders prediction. To effectively utilize rich multi-modal disease-related information, we introduce Modality Reward Representation Learning (MRRL), which dynamically constructs population graphs using an Affinity Metric Reward System (AMRS). We also employ a variational autoencoder to reconstruct latent representations of non-imaging features aligned with imaging features. Based on this, we introduce Adaptive Cross-Modal Graph Learning (ACMGL), which captures critical modality-specific and modality-shared features through a unified GTUNet encoder, taking advantages of Graph UNet and Graph Transformer, along with a feature fusion module. We validated our method on two public multi-modal datasets ABIDE and ADHD-200, demonstrating its superior performance in diagnosing BDs. Our code is available at https://github.com/NZWANG/MM-GTUNetshttps://github.com/NZWANG/MM-GTUNets