Underwater instance segmentation: a method based on channel spatial cross-cooperative attention mechanism and feature prior fusion

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Zhiqian He, Lijie Cao, Xiaoqing Xu, Jianhao Xu
{"title":"Underwater instance segmentation: a method based on channel spatial cross-cooperative attention mechanism and feature prior fusion","authors":"Zhiqian He, Lijie Cao, Xiaoqing Xu, Jianhao Xu","doi":"10.3389/fmars.2025.1557965","DOIUrl":null,"url":null,"abstract":"In aquaculture, underwater instance segmentation methods offer precise individual identification and counting capabilities. However, due to the inherent unique optical characteristics and high noise in underwater imagery, existing underwater instance segmentation models struggle to accurately capture the global and local feature information of objects, leading to generally lower detection accuracy in underwater instance segmentation models. To address this issue, this study proposes a novel Channel Space Coordinates Attention (CSCA) attention module and a Channel A Prior Attention Fusion (CAPAF) feature fusion module, aiming to improve the accuracy of underwater instance segmentation. The CSCA module effectively captures local and global information by combining channel and spatial attention weight, while the CAPAF module optimizes feature fusion by removing redundant information through learnable parameters. Experimental results demonstrate significant improvements when these two modules are applied to the YOLOv8 model, with the mAP@0.5 metric increasing by 3.2% and 2% on the UIIS underwater instance segmentation dataset. Furthermore, the instance segmentation accuracy is significantly improved on the UIIS and USIS10K datasets after these two modules are applied to other networks.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"103 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1557965","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In aquaculture, underwater instance segmentation methods offer precise individual identification and counting capabilities. However, due to the inherent unique optical characteristics and high noise in underwater imagery, existing underwater instance segmentation models struggle to accurately capture the global and local feature information of objects, leading to generally lower detection accuracy in underwater instance segmentation models. To address this issue, this study proposes a novel Channel Space Coordinates Attention (CSCA) attention module and a Channel A Prior Attention Fusion (CAPAF) feature fusion module, aiming to improve the accuracy of underwater instance segmentation. The CSCA module effectively captures local and global information by combining channel and spatial attention weight, while the CAPAF module optimizes feature fusion by removing redundant information through learnable parameters. Experimental results demonstrate significant improvements when these two modules are applied to the YOLOv8 model, with the mAP@0.5 metric increasing by 3.2% and 2% on the UIIS underwater instance segmentation dataset. Furthermore, the instance segmentation accuracy is significantly improved on the UIIS and USIS10K datasets after these two modules are applied to other networks.
在水产养殖中,水下实例分割方法可提供精确的个体识别和计数功能。然而,由于水下图像固有的独特光学特性和高噪声,现有的水下实例分割模型难以准确捕捉物体的全局和局部特征信息,导致水下实例分割模型的检测精度普遍较低。针对这一问题,本研究提出了一种新颖的通道空间坐标注意(CSCA)注意模块和通道先验注意融合(CAPAF)特征融合模块,旨在提高水下实例分割的准确性。CSCA 模块通过结合信道和空间注意力权重有效捕捉局部和全局信息,而 CAPAF 模块则通过可学习参数去除冗余信息来优化特征融合。实验结果表明,将这两个模块应用于 YOLOv8 模型后,效果显著,在 UIIS 水下实例分割数据集上,mAP@0.5 指标分别提高了 3.2% 和 2%。此外,将这两个模块应用于其他网络后,UIIS 和 USIS10K 数据集上的实例分割准确率也有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信