{"title":"Underwater instance segmentation: a method based on channel spatial cross-cooperative attention mechanism and feature prior fusion","authors":"Zhiqian He, Lijie Cao, Xiaoqing Xu, Jianhao Xu","doi":"10.3389/fmars.2025.1557965","DOIUrl":null,"url":null,"abstract":"In aquaculture, underwater instance segmentation methods offer precise individual identification and counting capabilities. However, due to the inherent unique optical characteristics and high noise in underwater imagery, existing underwater instance segmentation models struggle to accurately capture the global and local feature information of objects, leading to generally lower detection accuracy in underwater instance segmentation models. To address this issue, this study proposes a novel Channel Space Coordinates Attention (CSCA) attention module and a Channel A Prior Attention Fusion (CAPAF) feature fusion module, aiming to improve the accuracy of underwater instance segmentation. The CSCA module effectively captures local and global information by combining channel and spatial attention weight, while the CAPAF module optimizes feature fusion by removing redundant information through learnable parameters. Experimental results demonstrate significant improvements when these two modules are applied to the YOLOv8 model, with the mAP@0.5 metric increasing by 3.2% and 2% on the UIIS underwater instance segmentation dataset. Furthermore, the instance segmentation accuracy is significantly improved on the UIIS and USIS10K datasets after these two modules are applied to other networks.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"103 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1557965","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In aquaculture, underwater instance segmentation methods offer precise individual identification and counting capabilities. However, due to the inherent unique optical characteristics and high noise in underwater imagery, existing underwater instance segmentation models struggle to accurately capture the global and local feature information of objects, leading to generally lower detection accuracy in underwater instance segmentation models. To address this issue, this study proposes a novel Channel Space Coordinates Attention (CSCA) attention module and a Channel A Prior Attention Fusion (CAPAF) feature fusion module, aiming to improve the accuracy of underwater instance segmentation. The CSCA module effectively captures local and global information by combining channel and spatial attention weight, while the CAPAF module optimizes feature fusion by removing redundant information through learnable parameters. Experimental results demonstrate significant improvements when these two modules are applied to the YOLOv8 model, with the mAP@0.5 metric increasing by 3.2% and 2% on the UIIS underwater instance segmentation dataset. Furthermore, the instance segmentation accuracy is significantly improved on the UIIS and USIS10K datasets after these two modules are applied to other networks.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.