Trehalose dimycolate inhibits phagosome maturation and promotes intracellular M. tuberculosis growth via noncanonical SNARE interaction.

Carolina Santamaria, Kyle J Biegas, Pamelia N Lim, Jessica Cabral, Christi Y Kim, James R Lee, Ishani V Gaidhane, Casey Papson, Kyla Gomard-Henshaw, Alissa C Rothchild, Benjamin M Swarts, M Sloan Siegrist
{"title":"Trehalose dimycolate inhibits phagosome maturation and promotes intracellular <i>M. tuberculosis</i> growth via noncanonical SNARE interaction.","authors":"Carolina Santamaria, Kyle J Biegas, Pamelia N Lim, Jessica Cabral, Christi Y Kim, James R Lee, Ishani V Gaidhane, Casey Papson, Kyla Gomard-Henshaw, Alissa C Rothchild, Benjamin M Swarts, M Sloan Siegrist","doi":"10.1101/2024.12.16.627577","DOIUrl":null,"url":null,"abstract":"<p><p>Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation. The molecular mechanism by which TDM inhibits phagosome maturation has been elusive. We find that a clickable, photoaffinity TDM probe recapitulates key phenotypes of native TDM in macrophage host cells and binds several host SNARE proteins, including VTI1B, STX8, and VAMP2. VTI1B and STX8 normally promote endosome fusion by forming a complex with VAMP8. However, in the presence of <i>Mycobacterium tuberculosis</i> , VTI1B and STX8 complex with VAMP2, which in turn decreases VAMP8 binding. VAMP2 acts together with mycolate structure to inhibit phagosome maturation and promotes intracellular <i>M. tuberculosis</i> replication. Thus one mechanism by which TDM constrains the innate immune response to <i>M. tuberculosis</i> is via non-canonical SNARE complexation.</p><p><strong>Significance statement: </strong>Glycolipids from the <i>Mycobacterium tuberculosis</i> cell envelope, particularly trehalose dimycolate (TDM), play major roles in subverting the immune response to this intracellular pathogen. How subversion occurs is often unclear because glycans and lipids are technically challenging to study in cells. We discovered that a TDM-mimicking chemical probe interacts with three host SNARE proteins, including two that regulate endosome fusion and one that does not. The presence of TDM or <i>M. tuberculosis</i> triggers abnormal binding of these SNAREs, which in turn inhibits the fusion of <i>M. tuberculosis</i> -containing phagosomes with lysosomes and promotes <i>M. tuberculosis</i> replication. Our work provides an unusual example of a bacterial pathogen restricting the immune response via glycolipid-SNARE interactions.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.16.627577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation. The molecular mechanism by which TDM inhibits phagosome maturation has been elusive. We find that a clickable, photoaffinity TDM probe recapitulates key phenotypes of native TDM in macrophage host cells and binds several host SNARE proteins, including VTI1B, STX8, and VAMP2. VTI1B and STX8 normally promote endosome fusion by forming a complex with VAMP8. However, in the presence of Mycobacterium tuberculosis , VTI1B and STX8 complex with VAMP2, which in turn decreases VAMP8 binding. VAMP2 acts together with mycolate structure to inhibit phagosome maturation and promotes intracellular M. tuberculosis replication. Thus one mechanism by which TDM constrains the innate immune response to M. tuberculosis is via non-canonical SNARE complexation.

Significance statement: Glycolipids from the Mycobacterium tuberculosis cell envelope, particularly trehalose dimycolate (TDM), play major roles in subverting the immune response to this intracellular pathogen. How subversion occurs is often unclear because glycans and lipids are technically challenging to study in cells. We discovered that a TDM-mimicking chemical probe interacts with three host SNARE proteins, including two that regulate endosome fusion and one that does not. The presence of TDM or M. tuberculosis triggers abnormal binding of these SNAREs, which in turn inhibits the fusion of M. tuberculosis -containing phagosomes with lysosomes and promotes M. tuberculosis replication. Our work provides an unusual example of a bacterial pathogen restricting the immune response via glycolipid-SNARE interactions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信