Learning stochastic reaction-diffusion models from limited data using spatiotemporal features.

Bedri Abubaker-Sharif, Tatsat Banerjee, Peter N Devreotes, Pablo A Iglesias
{"title":"Learning stochastic reaction-diffusion models from limited data using spatiotemporal features.","authors":"Bedri Abubaker-Sharif, Tatsat Banerjee, Peter N Devreotes, Pablo A Iglesias","doi":"10.1101/2024.10.02.616367","DOIUrl":null,"url":null,"abstract":"<p><p>Pattern-forming stochastic systems arise throughout biology, with dynamic molecular waves observed in biochemical networks regulating critical cellular processes. Modeling these reaction-diffusion systems using handcrafted stochastic partial differential equations (PDEs) requires extensive trial-and-error tuning. Data-driven approaches for improved modeling are needed but have been hindered by data scarcity and noise. Here, we present a solution to the inverse problem of learning stochastic reaction-diffusion models from limited data by optimizing two spatiotemporal features: (1) stochastic dynamics and (2) spatiotemporal patterns. Combined with sparsity enforcement, this method identifies novel activator-inhibitor models with interpretable structure. We demonstrate robust learning from simulations of excitable systems with varying data scarcity, as well as noisy live-cell imaging data with low temporal resolution and a single observed biomolecule. This generalizable approach to learning governing stochastic PDEs enhances our ability to model and understand complex spatiotemporal systems from limited, real-world data.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952355/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.02.616367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pattern-forming stochastic systems arise throughout biology, with dynamic molecular waves observed in biochemical networks regulating critical cellular processes. Modeling these reaction-diffusion systems using handcrafted stochastic partial differential equations (PDEs) requires extensive trial-and-error tuning. Data-driven approaches for improved modeling are needed but have been hindered by data scarcity and noise. Here, we present a solution to the inverse problem of learning stochastic reaction-diffusion models from limited data by optimizing two spatiotemporal features: (1) stochastic dynamics and (2) spatiotemporal patterns. Combined with sparsity enforcement, this method identifies novel activator-inhibitor models with interpretable structure. We demonstrate robust learning from simulations of excitable systems with varying data scarcity, as well as noisy live-cell imaging data with low temporal resolution and a single observed biomolecule. This generalizable approach to learning governing stochastic PDEs enhances our ability to model and understand complex spatiotemporal systems from limited, real-world data.

基于随机动力学和时空模式的机器学习稀疏反应-扩散模型。
近年来,活细胞成像已经生成了细胞内生化网络的详细时空数据集。这些网络通常表现出空间分布的可兴奋系统的特征,具有控制细胞迁移、分裂和其他基本生理功能等过程的信号活动传播波。传统上,这些反应-扩散系统是用随机偏微分方程结合空间朗格万型动力学来建模的。尽管这些基于知识的模型提供了有价值的见解,但它们通常不是直接从实验数据推断出来的。在这项研究中,我们引入并应用了两种数据驱动的方法来学习空间朗之万方程(SLE)模型的结构和参数:1)Kramers-Moyal回归,一种适应微尺度随机动力学的既定方法;2)波特征优化,一种匹配宏观尺度时空模式的新方法。与黑盒神经网络模型预测系统行为但不提供机制洞察力不同,这种方法估计与系统结构和动力学直接相关的非线性模型方程。作为概念验证,我们重点关注来自两个随机反应扩散模型的模拟数据集:一个基于FitzHugh-Nagumo方程(FHN模型),另一个基于FHN方程的生化适应版本(FR模型)。我们的研究结果表明,优化随机动力学和波浪模式可以直接从1D和2D空间数据中准确估计SLE模型的结构和参数。通过稀疏性强化,我们还为可激系统确定了新的稀疏反应扩散模型。我们表明,即使在与实验条件相似的数据集、低时间分辨率和未观察到的分子成分一起工作时,这种方法也能有效地近似系统行为。通过利用机器学习技术从时空数据中对可兴奋反应扩散模型进行稳健估计,这项工作增强了我们建模和理解调节细胞行为的复杂系统的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信