Vision Transformers in Medical Imaging: a Comprehensive Review of Advancements and Applications Across Multiple Diseases.

Sanad Aburass, Osama Dorgham, Jamil Al Shaqsi, Maha Abu Rumman, Omar Al-Kadi
{"title":"Vision Transformers in Medical Imaging: a Comprehensive Review of Advancements and Applications Across Multiple Diseases.","authors":"Sanad Aburass, Osama Dorgham, Jamil Al Shaqsi, Maha Abu Rumman, Omar Al-Kadi","doi":"10.1007/s10278-025-01481-y","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of artificial intelligence techniques, particularly deep learning, has transformed medical imaging. This paper presents a comprehensive review of recent research that leverage vision transformer (ViT) models for medical image classification across various disciplines. The medical fields of focus include breast cancer, skin lesions, magnetic resonance imaging brain tumors, lung diseases, retinal and eye analysis, COVID-19, heart diseases, colon cancer, brain disorders, diabetic retinopathy, skin diseases, kidney diseases, lymph node diseases, and bone analysis. Each work is critically analyzed and interpreted with respect to its performance, data preprocessing methodologies, model architecture, transfer learning techniques, model interpretability, and identified challenges. Our findings suggest that ViT shows promising results in the medical imaging domain, often outperforming traditional convolutional neural networks (CNN). A comprehensive overview is presented in the form of figures and tables summarizing the key findings from each field. This paper provides critical insights into the current state of medical image classification using ViT and highlights potential future directions for this rapidly evolving research area.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01481-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of artificial intelligence techniques, particularly deep learning, has transformed medical imaging. This paper presents a comprehensive review of recent research that leverage vision transformer (ViT) models for medical image classification across various disciplines. The medical fields of focus include breast cancer, skin lesions, magnetic resonance imaging brain tumors, lung diseases, retinal and eye analysis, COVID-19, heart diseases, colon cancer, brain disorders, diabetic retinopathy, skin diseases, kidney diseases, lymph node diseases, and bone analysis. Each work is critically analyzed and interpreted with respect to its performance, data preprocessing methodologies, model architecture, transfer learning techniques, model interpretability, and identified challenges. Our findings suggest that ViT shows promising results in the medical imaging domain, often outperforming traditional convolutional neural networks (CNN). A comprehensive overview is presented in the form of figures and tables summarizing the key findings from each field. This paper provides critical insights into the current state of medical image classification using ViT and highlights potential future directions for this rapidly evolving research area.

医学成像中的视觉变压器:在多种疾病中的进展和应用的综合综述。
人工智能技术的快速发展,特别是深度学习,已经改变了医学成像。本文全面回顾了近年来利用视觉变压器(ViT)模型进行医学图像分类的研究。重点医学领域包括乳腺癌、皮肤病变、磁共振成像脑肿瘤、肺部疾病、视网膜和眼睛分析、COVID-19、心脏病、结肠癌、脑部疾病、糖尿病视网膜病变、皮肤病、肾病、淋巴结疾病和骨骼分析。每一项工作都在其性能、数据预处理方法、模型架构、迁移学习技术、模型可解释性和确定的挑战方面进行了批判性的分析和解释。我们的研究结果表明,ViT在医学成像领域显示出有希望的结果,通常优于传统的卷积神经网络(CNN)。全面的概述以图表的形式呈现,总结了每个领域的主要发现。本文提供了使用ViT的医学图像分类现状的关键见解,并强调了这一快速发展的研究领域的潜在未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信