A Critical Role for Neutral Sphingomyelinase-2 in Doxorubicin-induced Cardiotoxicity.

Samia Mohammed, Victoria Alvarado, Ya-Ping Jiang, Fabiola N Velazquez, Monica E Alexander, Folnetti A Alvarez, Danielle Lambadis, Sam B Chiappone, Anne G Ostermeyer-Fay, Leiqing Zhang, Achraf A Shamseddine, Daniel Canals, Ashley J Snider, Richard Z Lin, Yusuf A Hannun, Christopher J Clarke
{"title":"A Critical Role for Neutral Sphingomyelinase-2 in Doxorubicin-induced Cardiotoxicity.","authors":"Samia Mohammed, Victoria Alvarado, Ya-Ping Jiang, Fabiola N Velazquez, Monica E Alexander, Folnetti A Alvarez, Danielle Lambadis, Sam B Chiappone, Anne G Ostermeyer-Fay, Leiqing Zhang, Achraf A Shamseddine, Daniel Canals, Ashley J Snider, Richard Z Lin, Yusuf A Hannun, Christopher J Clarke","doi":"10.1101/2025.03.20.644150","DOIUrl":null,"url":null,"abstract":"<p><p>Although Doxorubicin (Dox) is an effective chemotherapeutic, its clinical utility is limited by a cumulative dose-dependent cardiotoxicity. While mechanisms underlying this cardiotoxicity have been investigated, strategies targeting these pathways have had marginal effects or had potential to interfere with Dox's anti-cancer activity. Sphingolipids (SL) are central to the chemotherapy response in multiple cancers, yet comparatively little is known about their role in non-transformed tissue, and actionable SL targets have not been identified. Here, we identified the SL enzyme neutral sphingomyelinase-2 (nSMase2) as a crucial downstream effector of Dox that is critical for chronic Dox-induced cardiotoxicity. <i>In vitro</i> studies showed that Dox treatment induces nSMase2 mRNA, protein, activity, and Cer accumulation in cardiomyocytes (CM) but not in cardiac fibroblasts. Mechanistically, nSMase2 induction was downstream of Top2B and p53, two previously identified molecular regulators of Dox-induced cardiotoxicity. <i>In vivo</i> studies in a chronic Dox model of cardiotoxicity found that loss of nSMase2 activity-null fro/fro mice were significantly protected from Dox-induced cardiac damage, exhibiting maintained ejection fraction, fractional shortening, and reduced left ventricle mass compared to wild-type littermates. Biologically, nSMase2 was dispensable for Dox-induced cell death but was important for Dox-induced CM senescence both <i>in vitro</i> and <i>in vivo</i> . Microarray analysis identified the dual specificity phosphatase DUSP4 as a downstream target of nSMase2 <i>in vitro</i> in Dox-treated CMs and <i>in vivo</i> in the chronic Dox-treated heart. Taken together, these results establish nSMase2 as a key component of the DNA damage response pathway in CMs and define a critical role for nSMase2 as a SL mediator of Dox-induced cardiotoxicity through effects on CM senescence. In addition to cementing a role for SLs in Dox effects in normal tissue, this study further advances nSMase2 as a target of interest for cardioprotection.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.20.644150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although Doxorubicin (Dox) is an effective chemotherapeutic, its clinical utility is limited by a cumulative dose-dependent cardiotoxicity. While mechanisms underlying this cardiotoxicity have been investigated, strategies targeting these pathways have had marginal effects or had potential to interfere with Dox's anti-cancer activity. Sphingolipids (SL) are central to the chemotherapy response in multiple cancers, yet comparatively little is known about their role in non-transformed tissue, and actionable SL targets have not been identified. Here, we identified the SL enzyme neutral sphingomyelinase-2 (nSMase2) as a crucial downstream effector of Dox that is critical for chronic Dox-induced cardiotoxicity. In vitro studies showed that Dox treatment induces nSMase2 mRNA, protein, activity, and Cer accumulation in cardiomyocytes (CM) but not in cardiac fibroblasts. Mechanistically, nSMase2 induction was downstream of Top2B and p53, two previously identified molecular regulators of Dox-induced cardiotoxicity. In vivo studies in a chronic Dox model of cardiotoxicity found that loss of nSMase2 activity-null fro/fro mice were significantly protected from Dox-induced cardiac damage, exhibiting maintained ejection fraction, fractional shortening, and reduced left ventricle mass compared to wild-type littermates. Biologically, nSMase2 was dispensable for Dox-induced cell death but was important for Dox-induced CM senescence both in vitro and in vivo . Microarray analysis identified the dual specificity phosphatase DUSP4 as a downstream target of nSMase2 in vitro in Dox-treated CMs and in vivo in the chronic Dox-treated heart. Taken together, these results establish nSMase2 as a key component of the DNA damage response pathway in CMs and define a critical role for nSMase2 as a SL mediator of Dox-induced cardiotoxicity through effects on CM senescence. In addition to cementing a role for SLs in Dox effects in normal tissue, this study further advances nSMase2 as a target of interest for cardioprotection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信