Metal ion requirement for catalysis by 3'-5' RNA polymerases.

Brandon W J Iwaniec, Madison M Allegretti, Jane E Jackman
{"title":"Metal ion requirement for catalysis by 3'-5' RNA polymerases.","authors":"Brandon W J Iwaniec, Madison M Allegretti, Jane E Jackman","doi":"10.1101/2025.03.21.644660","DOIUrl":null,"url":null,"abstract":"<p><p>The two-metal ion mechanism for catalysis of RNA and DNA synthesis by 5'-3' polymerases has been extensively characterized. The 3'-5' polymerase family of enzymes, consisting of tRNA <sup>His</sup> guanylyltransferase (Thg1) and Thg1-like proteins (TLPs), perform a similar nucleotide addition reaction, but in the reverse direction, adding Watson-Crick base paired NTPs to the 5'-ends of RNA substrates, yet the effect of divalent cations beyond magnesium has not been described. Here, we examined the effects of five divalent cations (Mg <sup>2+</sup> , Mn <sup>2+</sup> , Co <sup>2+</sup> , Ni <sup>2+</sup> and Ca <sup>2+</sup> ) on templated nucleotide addition activity and kinetics of 5'-activation by ATP catalyzed by recombinantly purified, metal-free TLPs from organisms from diverse domains of life. This work revealed that different TLPs exhibit distinct dependencies on the concentration and identity of divalent metal ions that support effective catalysis. The patterns of metal ion usage demonstrated here for TLPs evince features that are characteristic of both canonical 5'-3' polymerases and DNA/RNA ligases. Similar to 5'-3' polymerases, some metals were also seen to be mutagenic in the context of TLP catalysis. Furthermore, we provide the first direct evidence that both ATP and the NTP poised for nucleotidyl transfer are present in the active site during the 5'-adenylylation. These results provide the first in-depth study of the role of the two-metal ion mechanism in TLP catalysis that was first suggested by structures of these enzymes.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.21.644660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The two-metal ion mechanism for catalysis of RNA and DNA synthesis by 5'-3' polymerases has been extensively characterized. The 3'-5' polymerase family of enzymes, consisting of tRNA His guanylyltransferase (Thg1) and Thg1-like proteins (TLPs), perform a similar nucleotide addition reaction, but in the reverse direction, adding Watson-Crick base paired NTPs to the 5'-ends of RNA substrates, yet the effect of divalent cations beyond magnesium has not been described. Here, we examined the effects of five divalent cations (Mg 2+ , Mn 2+ , Co 2+ , Ni 2+ and Ca 2+ ) on templated nucleotide addition activity and kinetics of 5'-activation by ATP catalyzed by recombinantly purified, metal-free TLPs from organisms from diverse domains of life. This work revealed that different TLPs exhibit distinct dependencies on the concentration and identity of divalent metal ions that support effective catalysis. The patterns of metal ion usage demonstrated here for TLPs evince features that are characteristic of both canonical 5'-3' polymerases and DNA/RNA ligases. Similar to 5'-3' polymerases, some metals were also seen to be mutagenic in the context of TLP catalysis. Furthermore, we provide the first direct evidence that both ATP and the NTP poised for nucleotidyl transfer are present in the active site during the 5'-adenylylation. These results provide the first in-depth study of the role of the two-metal ion mechanism in TLP catalysis that was first suggested by structures of these enzymes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信