Dosimetric impact of positional uncertainties and a robust optimization approach for rectal intensity-modulated brachytherapy.

Medical physics Pub Date : 2025-03-31 DOI:10.1002/mp.17800
Björn Morén, Alana Thibodeau-Antonacci, Jonathan Kalinowski, Shirin A Enger
{"title":"Dosimetric impact of positional uncertainties and a robust optimization approach for rectal intensity-modulated brachytherapy.","authors":"Björn Morén, Alana Thibodeau-Antonacci, Jonathan Kalinowski, Shirin A Enger","doi":"10.1002/mp.17800","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intensity-modulated brachytherapy (IMBT) employs rotating high-Z shields during treatment to decrease radiation in certain directions and conform the dose distribution to the target volume. Prototypes for dynamic IMBT have been proposed for prostate, cervical, and rectal cancer.</p><p><strong>Purpose: </strong>We considered two shielded applicators for IMBT rectal cancer treatment and investigated how rotational uncertainties in the shield angle and translational uncertainties in the source position affect plan evaluation criteria.</p><p><strong>Methods: </strong>The effect of rotational errors of <math> <semantics><msup><mn>3</mn> <mo>∘</mo></msup> <annotation>$3^\\circ$</annotation></semantics> </math> , <math> <semantics><msup><mn>5</mn> <mo>∘</mo></msup> <annotation>$5^\\circ$</annotation></semantics> </math> and <math> <semantics><msup><mn>10</mn> <mo>∘</mo></msup> <annotation>$10^\\circ$</annotation></semantics> </math> , and translational errors of 1, 2 and 3 mm on evaluation criteria were investigated for shields with <math> <semantics><msup><mn>180</mn> <mo>∘</mo></msup> <annotation>${\\rm 180}^\\circ$</annotation></semantics> </math> and <math> <semantics><msup><mn>90</mn> <mo>∘</mo></msup> <annotation>${\\rm 90}^\\circ$</annotation></semantics> </math> emission windows. Further, a robust optimization approach based on quadratic penalties that includes scenarios with errors was proposed. The extent to which dosimetric effects of positional errors can be mitigated with this model was evaluated compared to a quadratic penalty model without scenarios with errors. A retrospective rectal cancer data set of ten patients was included in this study. Treatment planning was performed using the Monte Carlo-based treatment planning system, RapidBrachyMCTPS.</p><p><strong>Results: </strong>For the largest investigated rotational error of <math> <semantics><mrow><mo>±</mo> <msup><mn>10</mn> <mo>∘</mo></msup> </mrow> <annotation>$\\pm 10^\\circ$</annotation></semantics> </math> , the clinical target volume  <math> <semantics><msub><mi>D</mi> <mn>90</mn></msub> <annotation>${\\rm D}_{90}$</annotation></semantics> </math> remained, on average, within <math> <semantics><mrow><mn>5</mn> <mo>%</mo></mrow> <annotation>$5\\%$</annotation></semantics> </math> of the result without error, while the contralateral healthy rectal wall experienced an increase in the mean <math> <semantics><msub><mi>D</mi> <mrow><mn>0.1</mn> <mi>c</mi> <mi>c</mi></mrow> </msub> <annotation>${\\rm D}_{0.1cc}$</annotation></semantics> </math> , <math> <semantics><msub><mi>D</mi> <mrow><mn>2</mn> <mi>c</mi> <mi>c</mi></mrow> </msub> <annotation>${\\rm D}_{2cc}$</annotation></semantics> </math> , and <math> <semantics><msub><mi>D</mi> <mn>50</mn></msub> <annotation>${\\rm D}_{50}$</annotation></semantics> </math> of <math> <semantics><mrow><mn>26</mn> <mo>%</mo></mrow> <annotation>$26\\%$</annotation></semantics> </math> , <math> <semantics><mrow><mn>9</mn> <mo>%</mo></mrow> <annotation>$9\\%$</annotation></semantics> </math> , and <math> <semantics><mrow><mn>1</mn> <mo>%</mo></mrow> <annotation>$1\\%$</annotation></semantics> </math> for the <math> <semantics><msup><mn>180</mn> <mo>∘</mo></msup> <annotation>${\\rm 180}^\\circ$</annotation></semantics> </math> shield and of 32%, 9%, and 2% for the <math> <semantics><msup><mn>90</mn> <mo>∘</mo></msup> <annotation>${\\rm 90}^\\circ$</annotation></semantics> </math> shield. For translational errors of <math> <semantics><mrow><mo>±</mo> <mn>2</mn></mrow> <annotation>$\\pm 2$</annotation></semantics> </math>  mm, there were increases in dosimetric indices for both the superior (sup) and inferior (inf) dose spill regions. Specifically, for the <math> <semantics><msup><mn>180</mn> <mo>∘</mo></msup> <annotation>${\\rm 180}^\\circ$</annotation></semantics> </math> shield, the <math> <semantics><msub><mi>D</mi> <mrow><mn>0.1</mn> <mi>c</mi> <mi>c</mi></mrow> </msub> <annotation>${\\rm D}_{0.1cc}$</annotation></semantics> </math> , <math> <semantics><msub><mi>D</mi> <mrow><mn>2</mn> <mi>c</mi> <mi>c</mi></mrow> </msub> <annotation>${\\rm D}_{2cc}$</annotation></semantics> </math> , and <math> <semantics><msub><mi>D</mi> <mn>50</mn></msub> <annotation>${\\rm D}_{50}$</annotation></semantics> </math> increased by <math> <semantics><mrow><mn>13</mn> <mo>%</mo></mrow> <annotation>$13\\%$</annotation></semantics> </math> , <math> <semantics><mrow><mn>11</mn> <mo>%</mo></mrow> <annotation>$11\\%$</annotation></semantics> </math> , and <math> <semantics><mrow><mn>10</mn> <mo>%</mo></mrow> <annotation>$10\\%$</annotation></semantics> </math> , respectively, for the sup region, and by <math> <semantics><mrow><mn>26</mn> <mo>%</mo></mrow> <annotation>$26\\%$</annotation></semantics> </math> , <math> <semantics><mrow><mn>15</mn> <mo>%</mo></mrow> <annotation>$15\\%$</annotation></semantics> </math> , and <math> <semantics><mrow><mn>11</mn> <mo>%</mo></mrow> <annotation>$11\\%$</annotation></semantics> </math> , respectively, for the inf region. Similar results were obtained with the <math> <semantics><msup><mn>90</mn> <mo>∘</mo></msup> <annotation>${\\rm 90}^\\circ$</annotation></semantics> </math> shield. Overall, the robust and traditional models had similar results. However, the number of active dwell positions obtained with the robust model was larger, and the longest dwell time was shorter.</p><p><strong>Conclusions: </strong>We have quantified the effect of rotational shield and translational source errors of various magnitudes on evaluation criteria for rectal IMBT. The robust optimization approach was generally not able to mitigate positional errors. However, it resulted in more homogeneous dwell times, which can be beneficial in conventional high-dose-rate brachytherapy to avoid hot spots around specific dwell positions.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Intensity-modulated brachytherapy (IMBT) employs rotating high-Z shields during treatment to decrease radiation in certain directions and conform the dose distribution to the target volume. Prototypes for dynamic IMBT have been proposed for prostate, cervical, and rectal cancer.

Purpose: We considered two shielded applicators for IMBT rectal cancer treatment and investigated how rotational uncertainties in the shield angle and translational uncertainties in the source position affect plan evaluation criteria.

Methods: The effect of rotational errors of 3 $3^\circ$ , 5 $5^\circ$ and 10 $10^\circ$ , and translational errors of 1, 2 and 3 mm on evaluation criteria were investigated for shields with 180 ${\rm 180}^\circ$ and 90 ${\rm 90}^\circ$ emission windows. Further, a robust optimization approach based on quadratic penalties that includes scenarios with errors was proposed. The extent to which dosimetric effects of positional errors can be mitigated with this model was evaluated compared to a quadratic penalty model without scenarios with errors. A retrospective rectal cancer data set of ten patients was included in this study. Treatment planning was performed using the Monte Carlo-based treatment planning system, RapidBrachyMCTPS.

Results: For the largest investigated rotational error of ± 10 $\pm 10^\circ$ , the clinical target volume  D 90 ${\rm D}_{90}$ remained, on average, within 5 % $5\%$ of the result without error, while the contralateral healthy rectal wall experienced an increase in the mean D 0.1 c c ${\rm D}_{0.1cc}$ , D 2 c c ${\rm D}_{2cc}$ , and D 50 ${\rm D}_{50}$ of 26 % $26\%$ , 9 % $9\%$ , and 1 % $1\%$ for the 180 ${\rm 180}^\circ$ shield and of 32%, 9%, and 2% for the 90 ${\rm 90}^\circ$ shield. For translational errors of ± 2 $\pm 2$  mm, there were increases in dosimetric indices for both the superior (sup) and inferior (inf) dose spill regions. Specifically, for the 180 ${\rm 180}^\circ$ shield, the D 0.1 c c ${\rm D}_{0.1cc}$ , D 2 c c ${\rm D}_{2cc}$ , and D 50 ${\rm D}_{50}$ increased by 13 % $13\%$ , 11 % $11\%$ , and 10 % $10\%$ , respectively, for the sup region, and by 26 % $26\%$ , 15 % $15\%$ , and 11 % $11\%$ , respectively, for the inf region. Similar results were obtained with the 90 ${\rm 90}^\circ$ shield. Overall, the robust and traditional models had similar results. However, the number of active dwell positions obtained with the robust model was larger, and the longest dwell time was shorter.

Conclusions: We have quantified the effect of rotational shield and translational source errors of various magnitudes on evaluation criteria for rectal IMBT. The robust optimization approach was generally not able to mitigate positional errors. However, it resulted in more homogeneous dwell times, which can be beneficial in conventional high-dose-rate brachytherapy to avoid hot spots around specific dwell positions.

位置不确定性的剂量学影响以及直肠强度调制近距离治疗的稳健优化方法。
背景:调强近距离放射治疗(IMBT)在治疗过程中采用旋转的高z屏蔽,以减少某些方向的辐射,使剂量分布与靶体积一致。动态IMBT的原型已被提出用于前列腺癌、宫颈癌和直肠癌。目的:我们考虑了两种用于IMBT直肠癌治疗的屏蔽涂抹器,并研究了屏蔽角度的旋转不确定性和源位置的平移不确定性如何影响计划评估标准。方法:研究了3°$3^\circ$、5°$5^\circ$和10°$10^ circ$的旋转误差以及1、2和3 mm的平移误差对180°${\rm 180}和90°${\rm 90}^\circ$发射窗的盾牌评定标准的影响。在此基础上,提出了一种基于二次惩罚的鲁棒优化方法。与没有误差情景的二次惩罚模型相比,评估了使用该模型可以减轻位置误差的剂量学效应的程度。本研究纳入了10例直肠癌患者的回顾性数据集。使用基于蒙特卡罗的治疗计划系统RapidBrachyMCTPS进行治疗计划。结果:最大调查旋转误差±10∘\ pm 10 ^ \保监会,美元临床靶体积D 90 $ {\ rm D} _{90}保持美元,平均在5%以内\ % $ 5美元的结果没有错误,而健康直肠侧墙有经验的增加意味着D 0.1度c $ {\ rm D} _ {0.1 cc} $, D 2 c c $ {\ rm D} _ {2 cc},美元和D 50 $ {\ rm D} _{50} 26% \ % 26美元,美元\ % 9美元,9%和1% $ 1 \ % $ 180∘$ {\ rm 180} ^ \保监会盾牌和美元的32%,9%,还有2%用于90°${\rm 90}^\circ$盾牌。平移误差为±2$ \pm 2$ mm时,高剂量区(sup)和低剂量区(inf)的剂量学指数都有所增加。具体地说,对于180°的${\rm 180}^ circ$盾牌,d0.1°c$ {\rm D}_{0.1cc}$、d2°c$ {\rm D}_{2cc}$和d50°{\rm D}_{50}$,在sup区域分别增加了13% $13\%$、11% $11\%$和10% $10\%$,在inf区域分别增加了26% $26\%$、15% $15\%$和11% $11\%$。用90°${\rm 90}^\circ$盾牌也得到了类似的结果。总体而言,稳健模型和传统模型的结果相似。但鲁棒模型得到的有效驻留位置较多,最长驻留时间较短。结论:我们量化了不同程度的旋转屏蔽和平移源误差对直肠IMBT评估标准的影响。鲁棒优化方法一般不能减轻位置误差。然而,它导致了更均匀的停留时间,这在传统的高剂量率近距离治疗中是有益的,可以避免特定停留位置周围的热点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信