Dosimetric impact of positional uncertainties and a robust optimization approach for rectal intensity-modulated brachytherapy.

Medical physics Pub Date : 2025-03-31 DOI:10.1002/mp.17800
Björn Morén, Alana Thibodeau-Antonacci, Jonathan Kalinowski, Shirin A Enger
{"title":"Dosimetric impact of positional uncertainties and a robust optimization approach for rectal intensity-modulated brachytherapy.","authors":"Björn Morén, Alana Thibodeau-Antonacci, Jonathan Kalinowski, Shirin A Enger","doi":"10.1002/mp.17800","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intensity-modulated brachytherapy (IMBT) employs rotating high-Z shields during treatment to decrease radiation in certain directions and conform the dose distribution to the target volume. Prototypes for dynamic IMBT have been proposed for prostate, cervical, and rectal cancer.</p><p><strong>Purpose: </strong>We considered two shielded applicators for IMBT rectal cancer treatment and investigated how rotational uncertainties in the shield angle and translational uncertainties in the source position affect plan evaluation criteria.</p><p><strong>Methods: </strong>The effect of rotational errors of <math> <semantics><msup><mn>3</mn> <mo>∘</mo></msup> <annotation>$3^\\circ$</annotation></semantics> </math> , <math> <semantics><msup><mn>5</mn> <mo>∘</mo></msup> <annotation>$5^\\circ$</annotation></semantics> </math> and <math> <semantics><msup><mn>10</mn> <mo>∘</mo></msup> <annotation>$10^\\circ$</annotation></semantics> </math> , and translational errors of 1, 2 and 3 mm on evaluation criteria were investigated for shields with <math> <semantics><msup><mn>180</mn> <mo>∘</mo></msup> <annotation>${\\rm 180}^\\circ$</annotation></semantics> </math> and <math> <semantics><msup><mn>90</mn> <mo>∘</mo></msup> <annotation>${\\rm 90}^\\circ$</annotation></semantics> </math> emission windows. Further, a robust optimization approach based on quadratic penalties that includes scenarios with errors was proposed. The extent to which dosimetric effects of positional errors can be mitigated with this model was evaluated compared to a quadratic penalty model without scenarios with errors. A retrospective rectal cancer data set of ten patients was included in this study. Treatment planning was performed using the Monte Carlo-based treatment planning system, RapidBrachyMCTPS.</p><p><strong>Results: </strong>For the largest investigated rotational error of <math> <semantics><mrow><mo>±</mo> <msup><mn>10</mn> <mo>∘</mo></msup> </mrow> <annotation>$\\pm 10^\\circ$</annotation></semantics> </math> , the clinical target volume  <math> <semantics><msub><mi>D</mi> <mn>90</mn></msub> <annotation>${\\rm D}_{90}$</annotation></semantics> </math> remained, on average, within <math> <semantics><mrow><mn>5</mn> <mo>%</mo></mrow> <annotation>$5\\%$</annotation></semantics> </math> of the result without error, while the contralateral healthy rectal wall experienced an increase in the mean <math> <semantics><msub><mi>D</mi> <mrow><mn>0.1</mn> <mi>c</mi> <mi>c</mi></mrow> </msub> <annotation>${\\rm D}_{0.1cc}$</annotation></semantics> </math> , <math> <semantics><msub><mi>D</mi> <mrow><mn>2</mn> <mi>c</mi> <mi>c</mi></mrow> </msub> <annotation>${\\rm D}_{2cc}$</annotation></semantics> </math> , and <math> <semantics><msub><mi>D</mi> <mn>50</mn></msub> <annotation>${\\rm D}_{50}$</annotation></semantics> </math> of <math> <semantics><mrow><mn>26</mn> <mo>%</mo></mrow> <annotation>$26\\%$</annotation></semantics> </math> , <math> <semantics><mrow><mn>9</mn> <mo>%</mo></mrow> <annotation>$9\\%$</annotation></semantics> </math> , and <math> <semantics><mrow><mn>1</mn> <mo>%</mo></mrow> <annotation>$1\\%$</annotation></semantics> </math> for the <math> <semantics><msup><mn>180</mn> <mo>∘</mo></msup> <annotation>${\\rm 180}^\\circ$</annotation></semantics> </math> shield and of 32%, 9%, and 2% for the <math> <semantics><msup><mn>90</mn> <mo>∘</mo></msup> <annotation>${\\rm 90}^\\circ$</annotation></semantics> </math> shield. For translational errors of <math> <semantics><mrow><mo>±</mo> <mn>2</mn></mrow> <annotation>$\\pm 2$</annotation></semantics> </math>  mm, there were increases in dosimetric indices for both the superior (sup) and inferior (inf) dose spill regions. Specifically, for the <math> <semantics><msup><mn>180</mn> <mo>∘</mo></msup> <annotation>${\\rm 180}^\\circ$</annotation></semantics> </math> shield, the <math> <semantics><msub><mi>D</mi> <mrow><mn>0.1</mn> <mi>c</mi> <mi>c</mi></mrow> </msub> <annotation>${\\rm D}_{0.1cc}$</annotation></semantics> </math> , <math> <semantics><msub><mi>D</mi> <mrow><mn>2</mn> <mi>c</mi> <mi>c</mi></mrow> </msub> <annotation>${\\rm D}_{2cc}$</annotation></semantics> </math> , and <math> <semantics><msub><mi>D</mi> <mn>50</mn></msub> <annotation>${\\rm D}_{50}$</annotation></semantics> </math> increased by <math> <semantics><mrow><mn>13</mn> <mo>%</mo></mrow> <annotation>$13\\%$</annotation></semantics> </math> , <math> <semantics><mrow><mn>11</mn> <mo>%</mo></mrow> <annotation>$11\\%$</annotation></semantics> </math> , and <math> <semantics><mrow><mn>10</mn> <mo>%</mo></mrow> <annotation>$10\\%$</annotation></semantics> </math> , respectively, for the sup region, and by <math> <semantics><mrow><mn>26</mn> <mo>%</mo></mrow> <annotation>$26\\%$</annotation></semantics> </math> , <math> <semantics><mrow><mn>15</mn> <mo>%</mo></mrow> <annotation>$15\\%$</annotation></semantics> </math> , and <math> <semantics><mrow><mn>11</mn> <mo>%</mo></mrow> <annotation>$11\\%$</annotation></semantics> </math> , respectively, for the inf region. Similar results were obtained with the <math> <semantics><msup><mn>90</mn> <mo>∘</mo></msup> <annotation>${\\rm 90}^\\circ$</annotation></semantics> </math> shield. Overall, the robust and traditional models had similar results. However, the number of active dwell positions obtained with the robust model was larger, and the longest dwell time was shorter.</p><p><strong>Conclusions: </strong>We have quantified the effect of rotational shield and translational source errors of various magnitudes on evaluation criteria for rectal IMBT. The robust optimization approach was generally not able to mitigate positional errors. However, it resulted in more homogeneous dwell times, which can be beneficial in conventional high-dose-rate brachytherapy to avoid hot spots around specific dwell positions.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Intensity-modulated brachytherapy (IMBT) employs rotating high-Z shields during treatment to decrease radiation in certain directions and conform the dose distribution to the target volume. Prototypes for dynamic IMBT have been proposed for prostate, cervical, and rectal cancer.

Purpose: We considered two shielded applicators for IMBT rectal cancer treatment and investigated how rotational uncertainties in the shield angle and translational uncertainties in the source position affect plan evaluation criteria.

Methods: The effect of rotational errors of 3 $3^\circ$ , 5 $5^\circ$ and 10 $10^\circ$ , and translational errors of 1, 2 and 3 mm on evaluation criteria were investigated for shields with 180 ${\rm 180}^\circ$ and 90 ${\rm 90}^\circ$ emission windows. Further, a robust optimization approach based on quadratic penalties that includes scenarios with errors was proposed. The extent to which dosimetric effects of positional errors can be mitigated with this model was evaluated compared to a quadratic penalty model without scenarios with errors. A retrospective rectal cancer data set of ten patients was included in this study. Treatment planning was performed using the Monte Carlo-based treatment planning system, RapidBrachyMCTPS.

Results: For the largest investigated rotational error of ± 10 $\pm 10^\circ$ , the clinical target volume  D 90 ${\rm D}_{90}$ remained, on average, within 5 % $5\%$ of the result without error, while the contralateral healthy rectal wall experienced an increase in the mean D 0.1 c c ${\rm D}_{0.1cc}$ , D 2 c c ${\rm D}_{2cc}$ , and D 50 ${\rm D}_{50}$ of 26 % $26\%$ , 9 % $9\%$ , and 1 % $1\%$ for the 180 ${\rm 180}^\circ$ shield and of 32%, 9%, and 2% for the 90 ${\rm 90}^\circ$ shield. For translational errors of ± 2 $\pm 2$  mm, there were increases in dosimetric indices for both the superior (sup) and inferior (inf) dose spill regions. Specifically, for the 180 ${\rm 180}^\circ$ shield, the D 0.1 c c ${\rm D}_{0.1cc}$ , D 2 c c ${\rm D}_{2cc}$ , and D 50 ${\rm D}_{50}$ increased by 13 % $13\%$ , 11 % $11\%$ , and 10 % $10\%$ , respectively, for the sup region, and by 26 % $26\%$ , 15 % $15\%$ , and 11 % $11\%$ , respectively, for the inf region. Similar results were obtained with the 90 ${\rm 90}^\circ$ shield. Overall, the robust and traditional models had similar results. However, the number of active dwell positions obtained with the robust model was larger, and the longest dwell time was shorter.

Conclusions: We have quantified the effect of rotational shield and translational source errors of various magnitudes on evaluation criteria for rectal IMBT. The robust optimization approach was generally not able to mitigate positional errors. However, it resulted in more homogeneous dwell times, which can be beneficial in conventional high-dose-rate brachytherapy to avoid hot spots around specific dwell positions.

位置不确定性的剂量学影响以及直肠强度调制近距离治疗的稳健优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信