Minimizing Human-Induced Variability in Quantitative Angiography for Robust and Explainable AI-Based Occlusion Prediction.

ArXiv Pub Date : 2025-03-13
Parmita Mondal, Mohammad Mahdi Shiraz Bhurwani, Swetadri Vasan Setlur Nagesh, Pui Man Rosalind Lai, Jason Davies, Elad Levy, Kunal Vakharia, Michael R Levitt, Adnan H Siddiqui, Ciprian N Ionita
{"title":"Minimizing Human-Induced Variability in Quantitative Angiography for Robust and Explainable AI-Based Occlusion Prediction.","authors":"Parmita Mondal, Mohammad Mahdi Shiraz Bhurwani, Swetadri Vasan Setlur Nagesh, Pui Man Rosalind Lai, Jason Davies, Elad Levy, Kunal Vakharia, Michael R Levitt, Adnan H Siddiqui, Ciprian N Ionita","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Bias from contrast injection variability is a significant obstacle to accurate intracranial aneurysm occlusion prediction using quantitative angiography and deep neural networks . This study explores bias removal and explainable AI for outcome prediction. This study used angiograms from 458 patients with flow diverters treated IAs with six month follow up defining occlusion status. We minimized injection variability by deconvolving the parent artery input to isolate the impulse response of aneurysms, then reconvolving it with a standardized injection curve. A deep neural network trained on these QA derived biomarkers predicted six month occlusion. Local Interpretable Model Agnostic Explanations identified the key imaging features influencing the model, ensuring transparency and clinical relevance.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952584/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bias from contrast injection variability is a significant obstacle to accurate intracranial aneurysm occlusion prediction using quantitative angiography and deep neural networks . This study explores bias removal and explainable AI for outcome prediction. This study used angiograms from 458 patients with flow diverters treated IAs with six month follow up defining occlusion status. We minimized injection variability by deconvolving the parent artery input to isolate the impulse response of aneurysms, then reconvolving it with a standardized injection curve. A deep neural network trained on these QA derived biomarkers predicted six month occlusion. Local Interpretable Model Agnostic Explanations identified the key imaging features influencing the model, ensuring transparency and clinical relevance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信