Mechanoreceptive A$β$ primary afferents discriminate naturalistic social touch inputs at a functionally relevant time scale.

ArXiv Pub Date : 2025-03-12
Shan Xu, Steven C Hauser, Saad S Nagi, James A Jablonski, Merat Rezaei, Ewa Jarocka, Andrew G Marshall, Håkan Olausson, Sarah McIntyre, Gregory J Gerling
{"title":"Mechanoreceptive A$β$ primary afferents discriminate naturalistic social touch inputs at a functionally relevant time scale.","authors":"Shan Xu, Steven C Hauser, Saad S Nagi, James A Jablonski, Merat Rezaei, Ewa Jarocka, Andrew G Marshall, Håkan Olausson, Sarah McIntyre, Gregory J Gerling","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Interpersonal touch is an important channel of social emotional interaction. How these physical skin-to-skin touch expressions are processed in the peripheral nervous system is not well understood. From microneurography recordings in humans, we evaluated the capacity of six subtypes of cutaneous mechanoreceptive afferents to differentiate human-delivered social touch expressions. Leveraging statistical and classification analyses, we found that single units of multiple mechanoreceptive A$\\beta$ subtypes, especially slowly adapting type II (SA-II) and fast adapting hair follicle afferents (HFA), can reliably differentiate social touch expressions at accuracies similar to human recognition. We then identified the most informative firing patterns of SA-II and HFA afferents, which indicate that average durations of 3-4 s of firing provide sufficient discriminative information. Those two subtypes also exhibit robust tolerance to spike-timing shifts of up to 10-20 ms, varying with touch expressions due to their specific firing properties. Greater shifts in spike-timing, however, can change a firing pattern's envelope to resemble that of another expression and drastically compromise an afferent's discrimination capacity. Altogether, the findings indicate that SA-II and HFA afferents differentiate the skin contact of social touch at time scales relevant for such interactions, which are 1-2 orders of magnitude longer than those for non-social touch.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952579/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interpersonal touch is an important channel of social emotional interaction. How these physical skin-to-skin touch expressions are processed in the peripheral nervous system is not well understood. From microneurography recordings in humans, we evaluated the capacity of six subtypes of cutaneous mechanoreceptive afferents to differentiate human-delivered social touch expressions. Leveraging statistical and classification analyses, we found that single units of multiple mechanoreceptive A$\beta$ subtypes, especially slowly adapting type II (SA-II) and fast adapting hair follicle afferents (HFA), can reliably differentiate social touch expressions at accuracies similar to human recognition. We then identified the most informative firing patterns of SA-II and HFA afferents, which indicate that average durations of 3-4 s of firing provide sufficient discriminative information. Those two subtypes also exhibit robust tolerance to spike-timing shifts of up to 10-20 ms, varying with touch expressions due to their specific firing properties. Greater shifts in spike-timing, however, can change a firing pattern's envelope to resemble that of another expression and drastically compromise an afferent's discrimination capacity. Altogether, the findings indicate that SA-II and HFA afferents differentiate the skin contact of social touch at time scales relevant for such interactions, which are 1-2 orders of magnitude longer than those for non-social touch.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信