Machine learning predictions from unpredictable chaos.

ArXiv Pub Date : 2025-03-19
Jian Jiang, Long Chen, Lu Ke, Bozheng Dou, Yueying Zhu, Yazhou Shi, Huahai Qiu, Bengong Zhang, Tianshou Zhou, Guo-Wei Wei
{"title":"Machine learning predictions from unpredictable chaos.","authors":"Jian Jiang, Long Chen, Lu Ke, Bozheng Dou, Yueying Zhu, Yazhou Shi, Huahai Qiu, Bengong Zhang, Tianshou Zhou, Guo-Wei Wei","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chaos is omnipresent in nature, and its understanding provides enormous social and economic benefits. However, the unpredictability of chaotic systems is a textbook concept due to their sensitivity to initial conditions, aperiodic behavior, fractal dimensions, nonlinearity, and strange attractors. In this work, we introduce, for the first time, chaotic learning, a novel multiscale topological paradigm that enables accurate predictions from chaotic systems. We show that seemingly random and unpredictable chaotic dynamics counterintuitively offer unprecedented quantitative predictions. Specifically, we devise multiscale topological Laplacians to embed real-world data into a family of interactive chaotic dynamical systems, modulate their dynamical behaviors, and enable the accurate prediction of the input data. As a proof of concept, we consider 28 datasets from four categories of realistic problems: 10 brain waves, four benchmark protein datasets, 13 single-cell RNA sequencing datasets, and an image dataset, as well as two distinct chaotic dynamical systems, namely the Lorenz and Rossler attractors. We demonstrate chaotic learning predictions of the physical properties from chaos. Our new chaotic learning paradigm profoundly changes the textbook perception of chaos and bridges topology, chaos, and learning for the first time.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chaos is omnipresent in nature, and its understanding provides enormous social and economic benefits. However, the unpredictability of chaotic systems is a textbook concept due to their sensitivity to initial conditions, aperiodic behavior, fractal dimensions, nonlinearity, and strange attractors. In this work, we introduce, for the first time, chaotic learning, a novel multiscale topological paradigm that enables accurate predictions from chaotic systems. We show that seemingly random and unpredictable chaotic dynamics counterintuitively offer unprecedented quantitative predictions. Specifically, we devise multiscale topological Laplacians to embed real-world data into a family of interactive chaotic dynamical systems, modulate their dynamical behaviors, and enable the accurate prediction of the input data. As a proof of concept, we consider 28 datasets from four categories of realistic problems: 10 brain waves, four benchmark protein datasets, 13 single-cell RNA sequencing datasets, and an image dataset, as well as two distinct chaotic dynamical systems, namely the Lorenz and Rossler attractors. We demonstrate chaotic learning predictions of the physical properties from chaos. Our new chaotic learning paradigm profoundly changes the textbook perception of chaos and bridges topology, chaos, and learning for the first time.

机器学习从不可预测的混乱中预测。
混乱在自然界中无处不在,对它的理解提供了巨大的社会和经济效益。然而,混沌系统的不可预测性由于其对初始条件、非周期行为、分形维数、非线性和奇异吸引子的敏感性而成为教科书概念。在这项工作中,我们首次引入了混沌学习,这是一种新的多尺度拓扑范式,可以从混沌系统中进行准确的预测。我们表明,看似随机和不可预测的混沌动力学反直觉提供了前所未有的定量预测。具体来说,我们设计了多尺度拓扑拉普拉斯算子,将现实世界的数据嵌入到一系列相互作用的混沌动力系统中,调节它们的动力行为,并能够准确预测输入数据。作为概念证明,我们考虑了来自四类现实问题的28个数据集:10个脑电波,4个基准蛋白质数据集,13个单细胞RNA测序数据集和一个图像数据集,以及两个不同的混沌动力系统,即洛伦兹和罗斯勒吸引子。我们从混沌中展示了物理性质的混沌学习预测。我们的新混沌学习范式深刻地改变了教科书对混沌的认知,并首次将拓扑、混沌和学习联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信