Differentiable Folding for Nearest Neighbor Model Optimization.

ArXiv Pub Date : 2025-03-12
Ryan K Krueger, Sharon Aviran, David H Mathews, Jeffrey Zuber, Max Ward
{"title":"Differentiable Folding for Nearest Neighbor Model Optimization.","authors":"Ryan K Krueger, Sharon Aviran, David H Mathews, Jeffrey Zuber, Max Ward","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Nearest Neighbor model is the $\\textit{de facto}$ thermodynamic model of RNA secondary structure formation and is a cornerstone of RNA structure prediction and sequence design. The current functional form (Turner 2004) contains $\\approx13,000$ underlying thermodynamic parameters, and fitting these to both experimental and structural data is computationally challenging. Here, we leverage recent advances in $\\textit{differentiable folding}$, a method for directly computing gradients of the RNA folding algorithms, to devise an efficient, scalable, and flexible means of parameter optimization that uses known RNA structures and thermodynamic experiments. Our method yields a significantly improved parameter set that outperforms existing baselines on all metrics, including an increase in the average predicted probability of ground-truth sequence-structure pairs for a single RNA family by over 23 orders of magnitude. Our framework provides a path towards drastically improved RNA models, enabling the flexible incorporation of new experimental data, definition of novel loss terms, large training sets, and even treatment as a module in larger deep learning pipelines. We make available a new database, RNAometer, with experimentally-determined stabilities for small RNA model systems.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Nearest Neighbor model is the $\textit{de facto}$ thermodynamic model of RNA secondary structure formation and is a cornerstone of RNA structure prediction and sequence design. The current functional form (Turner 2004) contains $\approx13,000$ underlying thermodynamic parameters, and fitting these to both experimental and structural data is computationally challenging. Here, we leverage recent advances in $\textit{differentiable folding}$, a method for directly computing gradients of the RNA folding algorithms, to devise an efficient, scalable, and flexible means of parameter optimization that uses known RNA structures and thermodynamic experiments. Our method yields a significantly improved parameter set that outperforms existing baselines on all metrics, including an increase in the average predicted probability of ground-truth sequence-structure pairs for a single RNA family by over 23 orders of magnitude. Our framework provides a path towards drastically improved RNA models, enabling the flexible incorporation of new experimental data, definition of novel loss terms, large training sets, and even treatment as a module in larger deep learning pipelines. We make available a new database, RNAometer, with experimentally-determined stabilities for small RNA model systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信