Pancreatic cancer extracellular vesicles stimulate Schwann cell activation and perineural invasion in vitro via IL-8/CCL2.

In vitro models Pub Date : 2025-03-07 eCollection Date: 2025-02-01 DOI:10.1007/s44164-025-00083-w
Emory Gregory, Isabel Powers, Azemat Jamshidi-Parsian, Robert J Griffin, Younghye Song
{"title":"Pancreatic cancer extracellular vesicles stimulate Schwann cell activation and perineural invasion in vitro via IL-8/CCL2.","authors":"Emory Gregory, Isabel Powers, Azemat Jamshidi-Parsian, Robert J Griffin, Younghye Song","doi":"10.1007/s44164-025-00083-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer-related deaths, and perineural invasion (PNI), in which cancer cells infiltrate nerves, enables metastasis in most patients. PNI is largely attributed to Schwann cells (SC) that, when activated, accelerate cancer cell migration towards nerves. However, this cancer-associated reprogramming is generally under-appreciated. Additionally, tumor extracellular vesicle (EV) facilitation of cancer aggravation is well documented, but more investigation is required to better understand their role in PNI. Here, we assessed whether PDAC EVs mediate PNI via SC activation using tissue-engineered in vitro platforms and PANC-1 and HPNE human cell lines as models.</p><p><strong>Methods: </strong>NanoSight, Luminex®, and proteomic-pathway analyses characterized tumor (PANC-1) and healthy cell (HPNE) EVs. Human Schwann-like cells (sNF96.2) were embedded in decellularized nerve matrix hydrogels and then treated with EVs and a cargo-function-blocking antibody. Immunofluorescence and Luminex® multiplex assays assessed Schwann cell activation. Subsequently, sNF96.2 cells were co-cultured with EVs and either PANC-1 or HPNE cells; Transwell® invasion assays with SC-conditioned media were also conducted to establish a mechanism of in vitro PNI.</p><p><strong>Results: </strong>PANC-1 EVs contained higher levels of interleukin-8 (IL-8) signaling-associated proteins than HPNE EVs. Within nerve-mimetic in vitro testbeds, PANC-1 EVs promoted sNF96.2 activation per cytoskeletal marker alterations and secretion of pro-tumorigenic cytokines, e.g., chemokine ligand-2 (CCL2), via IL-8 cargoes. Furthermore, the IL-8/CCL2 axis heightened PANC-1 invasiveness.</p><p><strong>Conclusion: </strong>These findings highlight the potential role of PDAC EVs in PNI, which necessitates continued preclinical assessments with increased biodiversity to determine the efficacy of targeting IL-8/CCL2 for PNI.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-025-00083-w.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"4 1","pages":"45-58"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-025-00083-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer-related deaths, and perineural invasion (PNI), in which cancer cells infiltrate nerves, enables metastasis in most patients. PNI is largely attributed to Schwann cells (SC) that, when activated, accelerate cancer cell migration towards nerves. However, this cancer-associated reprogramming is generally under-appreciated. Additionally, tumor extracellular vesicle (EV) facilitation of cancer aggravation is well documented, but more investigation is required to better understand their role in PNI. Here, we assessed whether PDAC EVs mediate PNI via SC activation using tissue-engineered in vitro platforms and PANC-1 and HPNE human cell lines as models.

Methods: NanoSight, Luminex®, and proteomic-pathway analyses characterized tumor (PANC-1) and healthy cell (HPNE) EVs. Human Schwann-like cells (sNF96.2) were embedded in decellularized nerve matrix hydrogels and then treated with EVs and a cargo-function-blocking antibody. Immunofluorescence and Luminex® multiplex assays assessed Schwann cell activation. Subsequently, sNF96.2 cells were co-cultured with EVs and either PANC-1 or HPNE cells; Transwell® invasion assays with SC-conditioned media were also conducted to establish a mechanism of in vitro PNI.

Results: PANC-1 EVs contained higher levels of interleukin-8 (IL-8) signaling-associated proteins than HPNE EVs. Within nerve-mimetic in vitro testbeds, PANC-1 EVs promoted sNF96.2 activation per cytoskeletal marker alterations and secretion of pro-tumorigenic cytokines, e.g., chemokine ligand-2 (CCL2), via IL-8 cargoes. Furthermore, the IL-8/CCL2 axis heightened PANC-1 invasiveness.

Conclusion: These findings highlight the potential role of PDAC EVs in PNI, which necessitates continued preclinical assessments with increased biodiversity to determine the efficacy of targeting IL-8/CCL2 for PNI.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-025-00083-w.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信