A Conditional Point Cloud Diffusion Model for Deformable Liver Motion Tracking Via a Single Arbitrarily-Angled X-ray Projection.

ArXiv Pub Date : 2025-03-13
Jiacheng Xie, Hua-Chieh Shao, Yunxiang Li, Shunyu Yan, Chenyang Shen, Jing Wang, You Zhang
{"title":"A Conditional Point Cloud Diffusion Model for Deformable Liver Motion Tracking Via a Single Arbitrarily-Angled X-ray Projection.","authors":"Jiacheng Xie, Hua-Chieh Shao, Yunxiang Li, Shunyu Yan, Chenyang Shen, Jing Wang, You Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Deformable liver motion tracking using a single X-ray projection enables real-time motion monitoring and treatment intervention. We introduce a conditional point cloud diffusion model-based framework for accurate and robust liver motion tracking from arbitrarily angled single X-ray projections (PCD-Liver), which estimates volumetric liver motion by solving deformable vector fields (DVFs) of a prior liver surface point cloud based on a single X-ray image. The model is patient-specific and consists of two main components: a rigid alignment model to estimate the liver's overall shifts and a conditional point cloud diffusion model that further corrects for liver surface deformations. Conditioned on motion-encoded features extracted from a single X-ray projection via a geometry-informed feature pooling layer, the diffusion model iteratively solves detailed liver surface DVFs in a projection angle-agnostic manner. The liver surface motion estimated by PCD-Liver serves as a boundary condition for a U-Net-based biomechanical model to infer internal liver motion and localize liver tumors. A dataset of ten liver cancer patients was used for evaluation. The accuracy of liver point cloud motion estimation was assessed using root mean square error (RMSE) and 95th-percentile Hausdorff distance (HD95), while liver tumor localization error was quantified using center-of-mass error (COME). The mean (standard deviation) RMSE, HD95, and COME of the prior liver or tumor before motion estimation were 8.86(1.51) mm, 10.88(2.56) mm, and 9.41(3.08) mm, respectively. After PCD-Liver motion estimation, the corresponding values improved to 3.59(0.28) mm, 4.29(0.62) mm, and 3.45(0.96) mm. Under highly noisy conditions, PCD-Liver maintained stable performance. This study presents an accurate and robust framework for deformable liver motion estimation and tumor localization in image-guided radiotherapy.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deformable liver motion tracking using a single X-ray projection enables real-time motion monitoring and treatment intervention. We introduce a conditional point cloud diffusion model-based framework for accurate and robust liver motion tracking from arbitrarily angled single X-ray projections (PCD-Liver), which estimates volumetric liver motion by solving deformable vector fields (DVFs) of a prior liver surface point cloud based on a single X-ray image. The model is patient-specific and consists of two main components: a rigid alignment model to estimate the liver's overall shifts and a conditional point cloud diffusion model that further corrects for liver surface deformations. Conditioned on motion-encoded features extracted from a single X-ray projection via a geometry-informed feature pooling layer, the diffusion model iteratively solves detailed liver surface DVFs in a projection angle-agnostic manner. The liver surface motion estimated by PCD-Liver serves as a boundary condition for a U-Net-based biomechanical model to infer internal liver motion and localize liver tumors. A dataset of ten liver cancer patients was used for evaluation. The accuracy of liver point cloud motion estimation was assessed using root mean square error (RMSE) and 95th-percentile Hausdorff distance (HD95), while liver tumor localization error was quantified using center-of-mass error (COME). The mean (standard deviation) RMSE, HD95, and COME of the prior liver or tumor before motion estimation were 8.86(1.51) mm, 10.88(2.56) mm, and 9.41(3.08) mm, respectively. After PCD-Liver motion estimation, the corresponding values improved to 3.59(0.28) mm, 4.29(0.62) mm, and 3.45(0.96) mm. Under highly noisy conditions, PCD-Liver maintained stable performance. This study presents an accurate and robust framework for deformable liver motion estimation and tumor localization in image-guided radiotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信