Leveraging sound speed dynamics and generative deep learning for ray-based ocean acoustic tomography.

IF 1.4 Q3 ACOUSTICS
Priyabrata Saha, Richard X Touret, Etienne Ollivier, Jihui Jin, Matthew McKinley, Justin Romberg, Karim G Sabra
{"title":"Leveraging sound speed dynamics and generative deep learning for ray-based ocean acoustic tomography.","authors":"Priyabrata Saha, Richard X Touret, Etienne Ollivier, Jihui Jin, Matthew McKinley, Justin Romberg, Karim G Sabra","doi":"10.1121/10.0036312","DOIUrl":null,"url":null,"abstract":"<p><p>A generative deep learning framework is introduced for ray-based ocean acoustic tomography (OAT), an inverse problem for estimating sound speed profiles (SSP) based on arrival-times measurements between multiple acoustic transducers, which is typically ill-posed. This framework relies on a robust low-dimensional parametrization of the expected SSP variations using a variational autoencoder and a linear dynamical model as further regularization. This framework was tested using SSP variations simulated by a regional ocean model with submesoscale permitting horizontal resolution and various transducer configurations spanning the upper ocean over short propagation ranges and was found to outperform conventional linear least squares formulations of OAT.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0036312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A generative deep learning framework is introduced for ray-based ocean acoustic tomography (OAT), an inverse problem for estimating sound speed profiles (SSP) based on arrival-times measurements between multiple acoustic transducers, which is typically ill-posed. This framework relies on a robust low-dimensional parametrization of the expected SSP variations using a variational autoencoder and a linear dynamical model as further regularization. This framework was tested using SSP variations simulated by a regional ocean model with submesoscale permitting horizontal resolution and various transducer configurations spanning the upper ocean over short propagation ranges and was found to outperform conventional linear least squares formulations of OAT.

利用声速动力学和生成深度学习进行基于射线的海洋声层析成像。
为基于射线的海洋声层析成像(OAT)引入了一个生成式深度学习框架,这是一个基于多个声换能器之间的到达时间测量来估计声速分布(SSP)的逆问题,通常是病态的。该框架依赖于使用变分自编码器和线性动态模型作为进一步正则化的预期SSP变化的鲁棒低维参数化。该框架使用区域海洋模式模拟的SSP变化进行了测试,该模式具有亚中尺度,允许水平分辨率和跨越上层海洋的各种换能器配置,在短传播范围内,发现优于传统的线性最小二乘OAT公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信