White matter microstructural alterations are associated with cognitive decline in benzodiazepine use disorders: a multi-shell diffusion magnetic resonance imaging study.

IF 2.9 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Quantitative Imaging in Medicine and Surgery Pub Date : 2025-03-03 Epub Date: 2025-02-26 DOI:10.21037/qims-24-1516
Meizhi Yi, Tianyao Wang, Xun Li, Yihong Jiang, Yan Wang, Luokai Zhang, Wen Chen, Jun Hu, Huiting Wu, Yang Zhou, Guanghua Luo, Jun Liu, Hong Zhou
{"title":"White matter microstructural alterations are associated with cognitive decline in benzodiazepine use disorders: a multi-shell diffusion magnetic resonance imaging study.","authors":"Meizhi Yi, Tianyao Wang, Xun Li, Yihong Jiang, Yan Wang, Luokai Zhang, Wen Chen, Jun Hu, Huiting Wu, Yang Zhou, Guanghua Luo, Jun Liu, Hong Zhou","doi":"10.21037/qims-24-1516","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Benzodiazepine use disorders (BUDs) have become a public health issue that cannot be ignored. We aimed to demonstrate that patients with BUDs might undergo changes in white matter (WM) integrity, which are related to impaired cognitive function.</p><p><strong>Methods: </strong>We used diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator (MAP) to observe changes in WM structure from 29 patients with sleep disorders with BUD (SDBUD), 33 patients with sleep disorders with non-BUD (SDNBUD), and 25 healthy participants. We also compared the diagnostic performance of the diffusion metrics and models in predicting the status of BUDs and evaluated the relationship between WM changes and cognitive impairment.</p><p><strong>Results: </strong>BUD was closely associated with WM damage in the corpus callosum (CC) and pontine crossing tract (PCT). There were 14 main diffusion metrics that could be used to predict BUD status (P=0.001-0.023). DTI, DKI, NODDI, and MAP had similar satisfactory performance for predicting BUD status (P=0.001-0.021). Pearson correlation analysis showed a close relationship between the Trail Making Test B (TMT-B) and DTI/NODDI metrics in the splenium of the CC and PCT and between the Montreal Cognitive Assessment (MoCA) and MAP metrics in the splenium of the CC in the SDBUD group (P=0.008-0.040).</p><p><strong>Conclusions: </strong>Our findings provide evidence for the neurobiological mechanism of benzodiazepine addiction and a novel method for the clinical diagnosis of BUDs.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":"15 3","pages":"2076-2093"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Imaging in Medicine and Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/qims-24-1516","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Benzodiazepine use disorders (BUDs) have become a public health issue that cannot be ignored. We aimed to demonstrate that patients with BUDs might undergo changes in white matter (WM) integrity, which are related to impaired cognitive function.

Methods: We used diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator (MAP) to observe changes in WM structure from 29 patients with sleep disorders with BUD (SDBUD), 33 patients with sleep disorders with non-BUD (SDNBUD), and 25 healthy participants. We also compared the diagnostic performance of the diffusion metrics and models in predicting the status of BUDs and evaluated the relationship between WM changes and cognitive impairment.

Results: BUD was closely associated with WM damage in the corpus callosum (CC) and pontine crossing tract (PCT). There were 14 main diffusion metrics that could be used to predict BUD status (P=0.001-0.023). DTI, DKI, NODDI, and MAP had similar satisfactory performance for predicting BUD status (P=0.001-0.021). Pearson correlation analysis showed a close relationship between the Trail Making Test B (TMT-B) and DTI/NODDI metrics in the splenium of the CC and PCT and between the Montreal Cognitive Assessment (MoCA) and MAP metrics in the splenium of the CC in the SDBUD group (P=0.008-0.040).

Conclusions: Our findings provide evidence for the neurobiological mechanism of benzodiazepine addiction and a novel method for the clinical diagnosis of BUDs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Imaging in Medicine and Surgery
Quantitative Imaging in Medicine and Surgery Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.20
自引率
17.90%
发文量
252
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信