Ultrasound-based deep learning radiomics for multi-stage assisted diagnosis in reducing unnecessary biopsies of BI-RADS 4A lesions.

IF 2.9 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Quantitative Imaging in Medicine and Surgery Pub Date : 2025-03-03 Epub Date: 2025-02-07 DOI:10.21037/qims-24-580
Xiangyu Lu, Yun Lu, Wuyuan Zhao, Yunliang Qi, Hongjuan Zhang, Wenhao Sun, Huaikun Zhang, Pei Ma, Ling Guan, Yide Ma
{"title":"Ultrasound-based deep learning radiomics for multi-stage assisted diagnosis in reducing unnecessary biopsies of BI-RADS 4A lesions.","authors":"Xiangyu Lu, Yun Lu, Wuyuan Zhao, Yunliang Qi, Hongjuan Zhang, Wenhao Sun, Huaikun Zhang, Pei Ma, Ling Guan, Yide Ma","doi":"10.21037/qims-24-580","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Even with the Breast Imaging Reporting and Data System (BI-RADS) guiding risk stratification on ultrasound (US) images, inconsistencies in diagnostic accuracy still exist, leading patients being subjected to unnecessary biopsies in clinical practice. This study investigated the construction of deep learning radiomics (DLR) models to improve the diagnostic consistency and reduce the unnecessary biopsies for BI-RADS 4A lesions.</p><p><strong>Methods: </strong>A total of 746 patients with breast lesions were enrolled in this retrospective study. Two DLR models based on US images and clinical variables were developed to conduct breast lesion risk re-stratification as BI-RADS 3 or lower and BI-RADS 4A or higher (DLR_LH), while simultaneously identifying BI-RADS 4A lesions with low malignancy probabilities to avoid unnecessary biopsy (DLR_BM). A three-round reader study with a two-stage artificial intelligence (AI)-assisted diagnosis process was performed to verify the assistive capability and practical benefits of the models in clinical applications.</p><p><strong>Results: </strong>The DLR_LH model achieved areas under the receiver operating characteristic curve (AUCs) of 0.963 and 0.889 with sensitivities of 92.0% and 83.3%, in the internal and external validation cohorts, respectively. The DLR_BM model exhibited AUCs of 0.977 and 0.942, with sensitivities of 94.1% and 86.4%, respectively. Both models were evaluated using integrated features of US images and clinical variables. Ultimately, 27.7% of BI-RADS 4A lesions avoided unnecessary biopsies. In the three-round reader study, all readers achieved significantly higher diagnostic accuracy and specificity, while maintaining outstanding sensitivity comparable to human experts, both before and after model assistance (P<0.05). These findings demonstrate the positive impact of the DLR models in assisting radiologists to enhance their diagnostic capabilities.</p><p><strong>Conclusions: </strong>The models performed well in breast US imaging interpretation and BI-RADS risk re-stratification, and demonstrated potential in reducing unnecessary biopsies of BI-RADS 4A lesions, indicating the promising applicability of the DLR models in clinical diagnosis.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":"15 3","pages":"2512-2528"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Imaging in Medicine and Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/qims-24-580","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Even with the Breast Imaging Reporting and Data System (BI-RADS) guiding risk stratification on ultrasound (US) images, inconsistencies in diagnostic accuracy still exist, leading patients being subjected to unnecessary biopsies in clinical practice. This study investigated the construction of deep learning radiomics (DLR) models to improve the diagnostic consistency and reduce the unnecessary biopsies for BI-RADS 4A lesions.

Methods: A total of 746 patients with breast lesions were enrolled in this retrospective study. Two DLR models based on US images and clinical variables were developed to conduct breast lesion risk re-stratification as BI-RADS 3 or lower and BI-RADS 4A or higher (DLR_LH), while simultaneously identifying BI-RADS 4A lesions with low malignancy probabilities to avoid unnecessary biopsy (DLR_BM). A three-round reader study with a two-stage artificial intelligence (AI)-assisted diagnosis process was performed to verify the assistive capability and practical benefits of the models in clinical applications.

Results: The DLR_LH model achieved areas under the receiver operating characteristic curve (AUCs) of 0.963 and 0.889 with sensitivities of 92.0% and 83.3%, in the internal and external validation cohorts, respectively. The DLR_BM model exhibited AUCs of 0.977 and 0.942, with sensitivities of 94.1% and 86.4%, respectively. Both models were evaluated using integrated features of US images and clinical variables. Ultimately, 27.7% of BI-RADS 4A lesions avoided unnecessary biopsies. In the three-round reader study, all readers achieved significantly higher diagnostic accuracy and specificity, while maintaining outstanding sensitivity comparable to human experts, both before and after model assistance (P<0.05). These findings demonstrate the positive impact of the DLR models in assisting radiologists to enhance their diagnostic capabilities.

Conclusions: The models performed well in breast US imaging interpretation and BI-RADS risk re-stratification, and demonstrated potential in reducing unnecessary biopsies of BI-RADS 4A lesions, indicating the promising applicability of the DLR models in clinical diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Imaging in Medicine and Surgery
Quantitative Imaging in Medicine and Surgery Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.20
自引率
17.90%
发文量
252
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信