Advanced deep learning for multi-class colorectal cancer histopathology: integrating transfer learning and ensemble methods.

IF 2.9 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Quantitative Imaging in Medicine and Surgery Pub Date : 2025-03-03 Epub Date: 2025-02-26 DOI:10.21037/qims-24-1641
Qi Ke, Wun-She Yap, Yee Kai Tee, Yan Chai Hum, Hua Zheng, Yu-Jian Gan
{"title":"Advanced deep learning for multi-class colorectal cancer histopathology: integrating transfer learning and ensemble methods.","authors":"Qi Ke, Wun-She Yap, Yee Kai Tee, Yan Chai Hum, Hua Zheng, Yu-Jian Gan","doi":"10.21037/qims-24-1641","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer is a major global health threat, constantly endangering people's well-being and lives. The application of deep learning in the diagnosis of colorectal cancer can improve early detection rates, thereby significantly reducing the incidence and mortality of colorectal cancer patients. Our study aims to optimize the performance of deep learning model in the classification of colorectal cancer histopathological images to assist pathologists in improving diagnostic accuracy.</p><p><strong>Methods: </strong>In this study, we developed ensemble models based on deep convolutional neural networks (CNNs) for the classification of colorectal cancer histopathology images. The method first involved data preprocessing techniques such as patch cropping, stain normalization, data augmentation and data balancing on histopathology images with different magnifications. Subsequently, the CNN models were fine-tuned and pre-trained using transfer learning methods, and models with superior performance were then selected as the base classifiers to build the ensemble models. Finally, the ensemble models were used to predict the final classification outcomes. To evaluate the effectiveness of the proposed models, we tested their performance on a publicly available colorectal cancer dataset, Enteroscope Biopsy Histopathological Hematoxylin and Eosin Image (EBHI) dataset.</p><p><strong>Results: </strong>Experimental results show that the proposed ensemble model, composed of the top five classifiers, achieved the promising classification accuracy across sub-databases with four different magnification factors. Specifically, on the 40× magnification subset, the highest classification accuracy reached 99.11%; on the 100× magnification subset, it reached 99.36%; on the 200× magnification subset, it was 99.29%; and on the 400× magnification subset, it was 98.96%. Additionally, the proposed ensemble model achieved exceptional results in recall, precision, and F1 score.</p><p><strong>Conclusions: </strong>The proposed ensemble models obtained good classification performance on the EBHI dataset of histopathological images for colorectal cancer. The findings of this study may contribute to the early detection and accurate classification of colorectal cancer, thereby aiding in more precise diagnostic analysis of colorectal cancer.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":"15 3","pages":"2329-2346"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948397/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Imaging in Medicine and Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/qims-24-1641","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cancer is a major global health threat, constantly endangering people's well-being and lives. The application of deep learning in the diagnosis of colorectal cancer can improve early detection rates, thereby significantly reducing the incidence and mortality of colorectal cancer patients. Our study aims to optimize the performance of deep learning model in the classification of colorectal cancer histopathological images to assist pathologists in improving diagnostic accuracy.

Methods: In this study, we developed ensemble models based on deep convolutional neural networks (CNNs) for the classification of colorectal cancer histopathology images. The method first involved data preprocessing techniques such as patch cropping, stain normalization, data augmentation and data balancing on histopathology images with different magnifications. Subsequently, the CNN models were fine-tuned and pre-trained using transfer learning methods, and models with superior performance were then selected as the base classifiers to build the ensemble models. Finally, the ensemble models were used to predict the final classification outcomes. To evaluate the effectiveness of the proposed models, we tested their performance on a publicly available colorectal cancer dataset, Enteroscope Biopsy Histopathological Hematoxylin and Eosin Image (EBHI) dataset.

Results: Experimental results show that the proposed ensemble model, composed of the top five classifiers, achieved the promising classification accuracy across sub-databases with four different magnification factors. Specifically, on the 40× magnification subset, the highest classification accuracy reached 99.11%; on the 100× magnification subset, it reached 99.36%; on the 200× magnification subset, it was 99.29%; and on the 400× magnification subset, it was 98.96%. Additionally, the proposed ensemble model achieved exceptional results in recall, precision, and F1 score.

Conclusions: The proposed ensemble models obtained good classification performance on the EBHI dataset of histopathological images for colorectal cancer. The findings of this study may contribute to the early detection and accurate classification of colorectal cancer, thereby aiding in more precise diagnostic analysis of colorectal cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Imaging in Medicine and Surgery
Quantitative Imaging in Medicine and Surgery Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.20
自引率
17.90%
发文量
252
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信