A Deep Learning Approach for Infant Pain Assessment Using Facial Expressions Through Convolutional Neural Network.

IF 1.3 4区 医学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Long Zhang, Ting Yan Zhu, Ying Zhang
{"title":"A Deep Learning Approach for Infant Pain Assessment Using Facial Expressions Through Convolutional Neural Network.","authors":"Long Zhang, Ting Yan Zhu, Ying Zhang","doi":"10.1097/CIN.0000000000001302","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs). Given infants' inability to verbally articulate pain, reliable assessment methods are crucial in clinical nursing. To address this need, we developed a CNN model utilizing the COPE (Classification of Pain Expression) database. Our model achieved a test accuracy of 90.24%, with an average precision and recall of 87.58%, and an F1 score of 0.8758. Additionally, the model demonstrated high performance with an area under the curve of 0.9818 on the receiver operating characteristic curve. These results underscore the potential utility of CNNs for providing an objective pain assessment in clinical settings. However, the study acknowledges limitations, including a small sample size, the need for external validation, and ethical considerations. Future research should focus on expanding the dataset, conducting external validation, refining model architectures, and addressing ethical considerations to enhance performance and applicability. These efforts will advance infant pain management, ensure ethical integrity, and improve the overall quality of care.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001302","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs). Given infants' inability to verbally articulate pain, reliable assessment methods are crucial in clinical nursing. To address this need, we developed a CNN model utilizing the COPE (Classification of Pain Expression) database. Our model achieved a test accuracy of 90.24%, with an average precision and recall of 87.58%, and an F1 score of 0.8758. Additionally, the model demonstrated high performance with an area under the curve of 0.9818 on the receiver operating characteristic curve. These results underscore the potential utility of CNNs for providing an objective pain assessment in clinical settings. However, the study acknowledges limitations, including a small sample size, the need for external validation, and ethical considerations. Future research should focus on expanding the dataset, conducting external validation, refining model architectures, and addressing ethical considerations to enhance performance and applicability. These efforts will advance infant pain management, ensure ethical integrity, and improve the overall quality of care.

基于卷积神经网络的婴儿面部表情疼痛评估的深度学习方法。
本研究提出了一种基于深度学习的方法,通过卷积神经网络(cnn)的面部表情分析来评估婴儿疼痛。鉴于婴儿无法言语表达疼痛,可靠的评估方法在临床护理中至关重要。为了满足这一需求,我们利用COPE(疼痛表达分类)数据库开发了一个CNN模型。该模型的测试准确率为90.24%,平均准确率和召回率为87.58%,F1得分为0.8758。此外,该模型在接收机工作特性曲线上的曲线下面积为0.9818,表现出良好的性能。这些结果强调了cnn在临床环境中提供客观疼痛评估的潜在效用。然而,该研究承认其局限性,包括样本量小、需要外部验证和伦理考虑。未来的研究应该集中在扩展数据集、进行外部验证、改进模型架构和解决伦理问题上,以提高性能和适用性。这些努力将促进婴儿疼痛管理,确保道德诚信,并提高整体护理质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cin-Computers Informatics Nursing
Cin-Computers Informatics Nursing 工程技术-护理
CiteScore
2.00
自引率
15.40%
发文量
248
审稿时长
6-12 weeks
期刊介绍: For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信