Machine learning-driven prediction of hospital admissions using gradient boosting and GPT-2.

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2025-03-28 eCollection Date: 2025-01-01 DOI:10.1177/20552076251331319
Xingyu Zhang, Hairong Wang, Guan Yu, Wenbin Zhang
{"title":"Machine learning-driven prediction of hospital admissions using gradient boosting and GPT-2.","authors":"Xingyu Zhang, Hairong Wang, Guan Yu, Wenbin Zhang","doi":"10.1177/20552076251331319","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurately predicting hospital admissions from the emergency department (ED) is essential for improving patient care and resource allocation. This study aimed to predict hospital admissions by integrating both structured clinical data and unstructured text data using machine learning models.</p><p><strong>Methods: </strong>Data were obtained from the 2021 National Hospital Ambulatory Medical Care Survey-Emergency Department (NHAMCS-ED), including adult patients aged 18 years and older. Structured data included demographics, visit characteristics, vital signs, and medical history, while unstructured data consisted of free-text chief complaints and injury descriptions. A Gradient Boosting Classifier (GBC) was applied to structured data, while a fine-tuned GPT-2 model processed the unstructured text. A combined model was created by averaging the outputs of both models. Model performance was evaluated using 5-fold cross-validation, assessing accuracy, precision, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC).</p><p><strong>Results: </strong>Among the 13,115 patients, 2264 (17.3%) were admitted to the hospital. The combined model outperformed the individual structured and unstructured models, achieving an accuracy of 75.8%, precision of 39.5%, sensitivity of 75.8%, and specificity of 75.8%. In comparison, the structured data model achieved 73.8% accuracy, while the unstructured model reached 64.6%. The combined model had the highest AUC, indicating superior performance.</p><p><strong>Conclusions: </strong>Combining structured and unstructured data using machine learning significantly improves the prediction of hospital admissions from the ED. This integrated approach can enhance decision-making and optimize ED operations.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251331319"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251331319","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurately predicting hospital admissions from the emergency department (ED) is essential for improving patient care and resource allocation. This study aimed to predict hospital admissions by integrating both structured clinical data and unstructured text data using machine learning models.

Methods: Data were obtained from the 2021 National Hospital Ambulatory Medical Care Survey-Emergency Department (NHAMCS-ED), including adult patients aged 18 years and older. Structured data included demographics, visit characteristics, vital signs, and medical history, while unstructured data consisted of free-text chief complaints and injury descriptions. A Gradient Boosting Classifier (GBC) was applied to structured data, while a fine-tuned GPT-2 model processed the unstructured text. A combined model was created by averaging the outputs of both models. Model performance was evaluated using 5-fold cross-validation, assessing accuracy, precision, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC).

Results: Among the 13,115 patients, 2264 (17.3%) were admitted to the hospital. The combined model outperformed the individual structured and unstructured models, achieving an accuracy of 75.8%, precision of 39.5%, sensitivity of 75.8%, and specificity of 75.8%. In comparison, the structured data model achieved 73.8% accuracy, while the unstructured model reached 64.6%. The combined model had the highest AUC, indicating superior performance.

Conclusions: Combining structured and unstructured data using machine learning significantly improves the prediction of hospital admissions from the ED. This integrated approach can enhance decision-making and optimize ED operations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信