Shan Wei, Miriam Temmeh Lattin, Stephanie Morgan, Leah DiBianco, Jocelyn Chen, Stephanie Galloway, Sinem Karipcin, Ronald Wapner, Chaim Landau, Eric J Forman, Wendy K Chung, Zev Williams
{"title":"Development of a Clinically Applicable High-Resolution Assay for Sperm Mosaicism.","authors":"Shan Wei, Miriam Temmeh Lattin, Stephanie Morgan, Leah DiBianco, Jocelyn Chen, Stephanie Galloway, Sinem Karipcin, Ronald Wapner, Chaim Landau, Eric J Forman, Wendy K Chung, Zev Williams","doi":"10.1016/j.jmoldx.2025.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm mosaicism, the presence of a pathogenic variant in a subset of sperm, is an important cause of heritable genetic disease. However, clinical testing for sperm mosaicism outside research has been limited by the lack of Clinical Laboratory Improvement Amendments (CLIA)-validated results deliverable to patients. We developed the Sensitive Assay for Mosaicism (SAM), a two-phase method for sperm mosaicism detection. In phase 1, sperm DNA undergoes deep sequencing using next-generation sequencing or nanopore-based sequencing with unique molecular identifiers (UMIs) to improve accuracy. In phase 2, PCR primers specific to UMI sequences generate amplicons for CLIA-validated Sanger sequencing, providing patient-ready results. SAM's performance was characterized and tested on semen samples from 14 participants, each with a prior offspring with a de novo pathogenic variant. SAM demonstrated a detection limit of approximately 0.005%. The UMI strategy improved sequencing accuracy on next-generation sequencing and nanopore platforms from 99.9% to >99.999%, and from 93% to >99.99%, respectively. Sperm mosaicism was identified in two tested cases: FAM111A (5.51%) and FGFR3 (0.0129%), with FGFR3 exhibiting selfish mutation validated in unrelated individuals showing varying mosaicism levels. SAM provides sensitive detection of low-level sperm mosaicism with CLIA-validated results for patients, enabling recurrence risk assessment and guiding risk mitigation strategies such as in vitro fertilization with preimplantation genetic testing for monogenic disease, sperm donation, and prenatal diagnosis.</p>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jmoldx.2025.03.002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sperm mosaicism, the presence of a pathogenic variant in a subset of sperm, is an important cause of heritable genetic disease. However, clinical testing for sperm mosaicism outside research has been limited by the lack of Clinical Laboratory Improvement Amendments (CLIA)-validated results deliverable to patients. We developed the Sensitive Assay for Mosaicism (SAM), a two-phase method for sperm mosaicism detection. In phase 1, sperm DNA undergoes deep sequencing using next-generation sequencing or nanopore-based sequencing with unique molecular identifiers (UMIs) to improve accuracy. In phase 2, PCR primers specific to UMI sequences generate amplicons for CLIA-validated Sanger sequencing, providing patient-ready results. SAM's performance was characterized and tested on semen samples from 14 participants, each with a prior offspring with a de novo pathogenic variant. SAM demonstrated a detection limit of approximately 0.005%. The UMI strategy improved sequencing accuracy on next-generation sequencing and nanopore platforms from 99.9% to >99.999%, and from 93% to >99.99%, respectively. Sperm mosaicism was identified in two tested cases: FAM111A (5.51%) and FGFR3 (0.0129%), with FGFR3 exhibiting selfish mutation validated in unrelated individuals showing varying mosaicism levels. SAM provides sensitive detection of low-level sperm mosaicism with CLIA-validated results for patients, enabling recurrence risk assessment and guiding risk mitigation strategies such as in vitro fertilization with preimplantation genetic testing for monogenic disease, sperm donation, and prenatal diagnosis.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.