Analyzing the brain's dynamic response to targeted stimulation using generative modeling.

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-03-05 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00433
Rishikesan Maran, Eli J Müller, Ben D Fulcher
{"title":"Analyzing the brain's dynamic response to targeted stimulation using generative modeling.","authors":"Rishikesan Maran, Eli J Müller, Ben D Fulcher","doi":"10.1162/netn_a_00433","DOIUrl":null,"url":null,"abstract":"<p><p>Generative models of brain activity have been instrumental in testing hypothesized mechanisms underlying brain dynamics against experimental datasets. Beyond capturing the key mechanisms underlying spontaneous brain dynamics, these models hold an exciting potential for understanding the mechanisms underlying the dynamics evoked by targeted brain stimulation techniques. This paper delves into this emerging application, using concepts from dynamical systems theory to argue that the stimulus-evoked dynamics in such experiments may be shaped by new types of mechanisms distinct from those that dominate spontaneous dynamics. We review and discuss (a) the targeted experimental techniques across spatial scales that can both perturb the brain to novel states and resolve its relaxation trajectory back to spontaneous dynamics and (b) how we can understand these dynamics in terms of mechanisms using physiological, phenomenological, and data-driven models. A tight integration of targeted stimulation experiments with generative quantitative modeling provides an important opportunity to uncover novel mechanisms of brain dynamics that are difficult to detect in spontaneous settings.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"237-258"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949581/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00433","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Generative models of brain activity have been instrumental in testing hypothesized mechanisms underlying brain dynamics against experimental datasets. Beyond capturing the key mechanisms underlying spontaneous brain dynamics, these models hold an exciting potential for understanding the mechanisms underlying the dynamics evoked by targeted brain stimulation techniques. This paper delves into this emerging application, using concepts from dynamical systems theory to argue that the stimulus-evoked dynamics in such experiments may be shaped by new types of mechanisms distinct from those that dominate spontaneous dynamics. We review and discuss (a) the targeted experimental techniques across spatial scales that can both perturb the brain to novel states and resolve its relaxation trajectory back to spontaneous dynamics and (b) how we can understand these dynamics in terms of mechanisms using physiological, phenomenological, and data-driven models. A tight integration of targeted stimulation experiments with generative quantitative modeling provides an important opportunity to uncover novel mechanisms of brain dynamics that are difficult to detect in spontaneous settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信