Neural network embedding of functional microconnectome.

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-03-05 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00424
Arata Shirakami, Takeshi Hase, Yuki Yamaguchi, Masanori Shimono
{"title":"Neural network embedding of functional microconnectome.","authors":"Arata Shirakami, Takeshi Hase, Yuki Yamaguchi, Masanori Shimono","doi":"10.1162/netn_a_00424","DOIUrl":null,"url":null,"abstract":"<p><p>Our brains operate as a complex network of interconnected neurons. To gain a deeper understanding of this network architecture, it is essential to extract simple rules from its intricate structure. This study aimed to compress and simplify the architecture, with a particular focus on interpreting patterns of functional connectivity in 2.5 hr of electrical activity from a vast number of neurons in acutely sliced mouse brains. Here, we combined two distinct methods together: automatic compression and network analysis. Firstly, for automatic compression, we trained an artificial neural network named NNE (neural network embedding). This allowed us to reduce the connectivity to features, be represented only by 13% of the original neuron count. Secondly, to decipher the topology, we concentrated on the variability among the compressed features and compared them with 15 distinct network metrics. Specifically, we introduced new metrics that had not previously existed, termed as indirect-adjacent degree and neighbor hub ratio. Our results conclusively demonstrated that these new metrics could better explain approximately 40%-45% of the features. This finding highlighted the critical role of NNE in facilitating the development of innovative metrics, because some of the features extracted by NNE were not captured by the currently existed network metrics.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"159-180"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00424","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Our brains operate as a complex network of interconnected neurons. To gain a deeper understanding of this network architecture, it is essential to extract simple rules from its intricate structure. This study aimed to compress and simplify the architecture, with a particular focus on interpreting patterns of functional connectivity in 2.5 hr of electrical activity from a vast number of neurons in acutely sliced mouse brains. Here, we combined two distinct methods together: automatic compression and network analysis. Firstly, for automatic compression, we trained an artificial neural network named NNE (neural network embedding). This allowed us to reduce the connectivity to features, be represented only by 13% of the original neuron count. Secondly, to decipher the topology, we concentrated on the variability among the compressed features and compared them with 15 distinct network metrics. Specifically, we introduced new metrics that had not previously existed, termed as indirect-adjacent degree and neighbor hub ratio. Our results conclusively demonstrated that these new metrics could better explain approximately 40%-45% of the features. This finding highlighted the critical role of NNE in facilitating the development of innovative metrics, because some of the features extracted by NNE were not captured by the currently existed network metrics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信