Computer-assisted prescription of erythropoiesis-stimulating agents in patients undergoing maintenance hemodialysis: a randomized control trial for artificial intelligence model selection.
{"title":"Computer-assisted prescription of erythropoiesis-stimulating agents in patients undergoing maintenance hemodialysis: a randomized control trial for artificial intelligence model selection.","authors":"Lee-Moay Lim, Ming-Yen Lin, Chan Hsu, Chantung Ku, Yi-Pei Chen, Yihuang Kang, Yi-Wen Chiu","doi":"10.1093/jamiaopen/ooaf020","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Machine learning (ML) algorithms are promising tools for managing anemia in hemodialysis (HD) patients. However, their efficacy in predicting erythropoiesis-stimulating agents (ESAs) doses remains uncertain. This study aimed to evaluate the effectiveness of a contemporary artificial intelligence (AI) model in prescribing ESA doses compared to physicians for HD patients.</p><p><strong>Materials and methods: </strong>This double-blinded control trial randomized participants into traditional doctor (Dr) and AI groups. In the Dr group, doses of ESA were determined by following clinical guideline recommendations, while in the AI group, they were predicted by the developed models named Random effects (REEM) trees, Mixed-effect random forest (MERF), Long short-term memory (LSTM) networks-I, and LSTM-II. The primary outcome was the capability to maintain patients' hemoglobin (Hb) value near 11 g/dL with a margin of 0.25 g/dL after treating the suggested ESA, with the secondary outcome being Hb value between 10 and 12 g/dL.</p><p><strong>Results: </strong>A total of 124 participants were enrolled, with 104 completing the study. The mean Hb values were 10.8 and 10.9 g/dL in the AI and Dr groups, respectively, with 69.7% and 73.5% of participants in the respective groups maintaining Hb levels between 10 and 12 g/dL. Only the REEM trees model passed the non-inferiority test for the primary outcome with a margin of 0.25 g/dL and the secondary outcome with a margin of 15%. There was no difference in severe adverse events between the 2 groups.</p><p><strong>Conclusion: </strong>The REEM trees AI model demonstrated non-inferiority to physicians in prescribing ESA doses for HD patients, maintaining Hb levels within the therapeutic target.</p><p><strong>Clinicaltrialsgov identifier: </strong>NCT04185519.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 2","pages":"ooaf020"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Machine learning (ML) algorithms are promising tools for managing anemia in hemodialysis (HD) patients. However, their efficacy in predicting erythropoiesis-stimulating agents (ESAs) doses remains uncertain. This study aimed to evaluate the effectiveness of a contemporary artificial intelligence (AI) model in prescribing ESA doses compared to physicians for HD patients.
Materials and methods: This double-blinded control trial randomized participants into traditional doctor (Dr) and AI groups. In the Dr group, doses of ESA were determined by following clinical guideline recommendations, while in the AI group, they were predicted by the developed models named Random effects (REEM) trees, Mixed-effect random forest (MERF), Long short-term memory (LSTM) networks-I, and LSTM-II. The primary outcome was the capability to maintain patients' hemoglobin (Hb) value near 11 g/dL with a margin of 0.25 g/dL after treating the suggested ESA, with the secondary outcome being Hb value between 10 and 12 g/dL.
Results: A total of 124 participants were enrolled, with 104 completing the study. The mean Hb values were 10.8 and 10.9 g/dL in the AI and Dr groups, respectively, with 69.7% and 73.5% of participants in the respective groups maintaining Hb levels between 10 and 12 g/dL. Only the REEM trees model passed the non-inferiority test for the primary outcome with a margin of 0.25 g/dL and the secondary outcome with a margin of 15%. There was no difference in severe adverse events between the 2 groups.
Conclusion: The REEM trees AI model demonstrated non-inferiority to physicians in prescribing ESA doses for HD patients, maintaining Hb levels within the therapeutic target.