Evaluating cell type deconvolution in FFPE breast tissue: application to benign breast disease.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-08-06 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae098
Yuanhang Liu, Robert A Vierkant, Aditya Bhagwate, William A Jons, Melody L Stallings-Mann, Bryan M McCauley, Jodi M Carter, Melissa T Stephens, Michael E Pfrender, Laurie E Littlepage, Derek C Radisky, Julie M Cunningham, Amy C Degnim, Stacey J Winham, Chen Wang
{"title":"Evaluating cell type deconvolution in FFPE breast tissue: application to benign breast disease.","authors":"Yuanhang Liu, Robert A Vierkant, Aditya Bhagwate, William A Jons, Melody L Stallings-Mann, Bryan M McCauley, Jodi M Carter, Melissa T Stephens, Michael E Pfrender, Laurie E Littlepage, Derek C Radisky, Julie M Cunningham, Amy C Degnim, Stacey J Winham, Chen Wang","doi":"10.1093/nargab/lqae098","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptome profiling using RNA sequencing (RNA-seq) of bulk formalin-fixed paraffin-embedded (FFPE) tissue blocks is a standard method in biomedical research. However, when used on tissues with diverse cell type compositions, it yields averaged gene expression profiles, complicating biomarker identification due to variations in cell proportions. To address the need for optimized strategies for defining individual cell type compositions from bulk FFPE samples, we constructed single-cell RNA-seq reference data for breast tissue and tested cell type deconvolution methods. Initial simulation experiments showed similar performances across multiple commonly used deconvolution methods. However, the introduction of FFPE artifacts significantly impacted their performances, with a root mean squared error (RMSE) ranging between 0.04 and 0.17. Scaden, a deep learning-based method, consistently outperformed the others, demonstrating robustness against FFPE artifacts. Testing these methods on our 62-sample RNA-seq benign breast disease cohort in which cell type composition was estimated using digital pathology approaches, we found that pre-filtering of the reference data enhanced the accuracy of most methods, realizing up to a 32% reduction in RMSE. To support further research efforts in this domain, we introduce SCdeconR, an R package designed for streamlined cell type deconvolution assessments and downstream analyses.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 3","pages":"lqae098"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcriptome profiling using RNA sequencing (RNA-seq) of bulk formalin-fixed paraffin-embedded (FFPE) tissue blocks is a standard method in biomedical research. However, when used on tissues with diverse cell type compositions, it yields averaged gene expression profiles, complicating biomarker identification due to variations in cell proportions. To address the need for optimized strategies for defining individual cell type compositions from bulk FFPE samples, we constructed single-cell RNA-seq reference data for breast tissue and tested cell type deconvolution methods. Initial simulation experiments showed similar performances across multiple commonly used deconvolution methods. However, the introduction of FFPE artifacts significantly impacted their performances, with a root mean squared error (RMSE) ranging between 0.04 and 0.17. Scaden, a deep learning-based method, consistently outperformed the others, demonstrating robustness against FFPE artifacts. Testing these methods on our 62-sample RNA-seq benign breast disease cohort in which cell type composition was estimated using digital pathology approaches, we found that pre-filtering of the reference data enhanced the accuracy of most methods, realizing up to a 32% reduction in RMSE. To support further research efforts in this domain, we introduce SCdeconR, an R package designed for streamlined cell type deconvolution assessments and downstream analyses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信