Fingolimod ameliorates amyloid deposition and neurodegeneration in APP/PS1 mouse model of Alzheimer's disease.

IF 4.3 Q2 BUSINESS
Meng-Ting Wang, Zi-Cheng Hu, Yang Xiang, Xiao-Qin Zeng, Zhang-Cheng Fei, Jia Chen, Xin-Peng Li, Yu-Peng Zhu, Jun Wang, Yan-Jiang Wang, Zhi-Qiang Xu, Yu-Hui Liu
{"title":"Fingolimod ameliorates amyloid deposition and neurodegeneration in APP/PS1 mouse model of Alzheimer's disease.","authors":"Meng-Ting Wang, Zi-Cheng Hu, Yang Xiang, Xiao-Qin Zeng, Zhang-Cheng Fei, Jia Chen, Xin-Peng Li, Yu-Peng Zhu, Jun Wang, Yan-Jiang Wang, Zhi-Qiang Xu, Yu-Hui Liu","doi":"10.1016/j.tjpad.2025.100131","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The immune system plays a critical role in regulating amyloid-beta (Aβ) metabolism in Alzheimer's Disease (AD). Both T and B lymphocytes are involved in the pathogenesis of AD. The sphingosine-1-phosphate (S1P) receptor modulator fingolimod used in the treatment of multiple sclerosis, can promote lymphocyte homing, potentially reducing the infiltration of peripheral lymphocytes into the brain.</p><p><strong>Methods: </strong>In this study, 8-month-old APP/PS1 mice were orally administered fingolimod at a dose of 1 mg/kg/day or saline as a control for 2 months. After treatment, the mice were subjected to behavioral tests, pathological examinations, and biochemical analyses to evaluate behavioral deficits and AD-type pathologies.</p><p><strong>Results: </strong>Fingolimod inhibits the infiltration of peripheral lymphocytes into the brain and reduces neuroinflammation. Fingolimod enhances cognitive function and alleviates brain Aβ deposition. Additionally, fingolimod treatment mitigates other AD-related pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration. Proteomic analysis further confirms the therapeutic effects of fingolimod in AD, reflected by the downregulation of proteins involved in multiple AD-associated pathways.</p><p><strong>Discussion: </strong>This study illustrates that fingolimod effectively ameliorates multiple pathological features of AD, highlighting its potential as a promising therapeutic candidate for the disease.</p>","PeriodicalId":22711,"journal":{"name":"The Journal of Prevention of Alzheimer's Disease","volume":" ","pages":"100131"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Prevention of Alzheimer's Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.tjpad.2025.100131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The immune system plays a critical role in regulating amyloid-beta (Aβ) metabolism in Alzheimer's Disease (AD). Both T and B lymphocytes are involved in the pathogenesis of AD. The sphingosine-1-phosphate (S1P) receptor modulator fingolimod used in the treatment of multiple sclerosis, can promote lymphocyte homing, potentially reducing the infiltration of peripheral lymphocytes into the brain.

Methods: In this study, 8-month-old APP/PS1 mice were orally administered fingolimod at a dose of 1 mg/kg/day or saline as a control for 2 months. After treatment, the mice were subjected to behavioral tests, pathological examinations, and biochemical analyses to evaluate behavioral deficits and AD-type pathologies.

Results: Fingolimod inhibits the infiltration of peripheral lymphocytes into the brain and reduces neuroinflammation. Fingolimod enhances cognitive function and alleviates brain Aβ deposition. Additionally, fingolimod treatment mitigates other AD-related pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration. Proteomic analysis further confirms the therapeutic effects of fingolimod in AD, reflected by the downregulation of proteins involved in multiple AD-associated pathways.

Discussion: This study illustrates that fingolimod effectively ameliorates multiple pathological features of AD, highlighting its potential as a promising therapeutic candidate for the disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Prevention of Alzheimer's Disease
The Journal of Prevention of Alzheimer's Disease Medicine-Psychiatry and Mental Health
CiteScore
9.20
自引率
0.00%
发文量
0
期刊介绍: The JPAD Journal of Prevention of Alzheimer’Disease will publish reviews, original research articles and short reports to improve our knowledge in the field of Alzheimer prevention including: neurosciences, biomarkers, imaging, epidemiology, public health, physical cognitive exercise, nutrition, risk and protective factors, drug development, trials design, and heath economic outcomes.JPAD will publish also the meeting abstracts from Clinical Trial on Alzheimer Disease (CTAD) and will be distributed both in paper and online version worldwide.We hope that JPAD with your contribution will play a role in the development of Alzheimer prevention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信