Ritt R Givens, Terrence T Kim, Matan S Malka, Kevin Lu, Thomas M Zervos, Joseph Lombardi, Zeeshan Sardar, Ronald Lehman, Lawrence Lenke, Rajiv Sethi, Stephen Lewis, Daniel Hedequist, Themistocles Protopsaltis, A Noelle Larson, Sheeraz Qureshi, Brandon Carlson, David Skaggs, Michael G Vitale
{"title":"Development of a classification system for potential sources of error in robotic-assisted spine surgery.","authors":"Ritt R Givens, Terrence T Kim, Matan S Malka, Kevin Lu, Thomas M Zervos, Joseph Lombardi, Zeeshan Sardar, Ronald Lehman, Lawrence Lenke, Rajiv Sethi, Stephen Lewis, Daniel Hedequist, Themistocles Protopsaltis, A Noelle Larson, Sheeraz Qureshi, Brandon Carlson, David Skaggs, Michael G Vitale","doi":"10.1007/s43390-025-01066-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Robotic-assisted spine surgery (RASS) has increased in prevalence over recent years, and while much work has been done to analyze differences in outcomes when compared to the freehand technique, little has been done to characterize the potential pitfalls associated with using robotics. This study's goal was to leverage expert opinion to develop a classification system of potential sources of error that may be encountered when using robotics in spine surgery. This not only provides practitioners, particularly those in the early stages of robotic adoption, with insight into possible sources of error but also provides the community at large with a more standardized language through which to communicate.</p><p><strong>Methods: </strong>The Delphi method, which is a validated system of developing consensus, was utilized. The method employed an iterative presentation of classification categories that were then edited, removed, or elaborated upon during several rounds of discussion. Voting took place to accept or reject the individual classification categories with consensus defined as ≥ 80% agreement.</p><p><strong>Results: </strong>After a three-round iterative survey and video conference Delphi process, followed by an in-person meeting at the Safety in Spine Surgery Summit, consensus was achieved on a classification system that includes four key types of potential sources of error in RASS as well as a list of the most commonly identified sources within each category. Initial sources of error that were considered included: cannula skidding/skive, penetration, screw misplacement, registration failure, and frame shift. After completion of the Delphi process, the final classification included four major types of pitfalls including: Reference/Navigation, Patient Factors, Technique, and Equipment Factors (available at https://safetyinspinesurgery.com/ ).</p><p><strong>Conclusion: </strong>This work provides expert insight into potential sources of error in the setting of robotic spine surgery. The working group established four discrete categories while providing a standardized language to unify communication.</p>","PeriodicalId":21796,"journal":{"name":"Spine deformity","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine deformity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43390-025-01066-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Robotic-assisted spine surgery (RASS) has increased in prevalence over recent years, and while much work has been done to analyze differences in outcomes when compared to the freehand technique, little has been done to characterize the potential pitfalls associated with using robotics. This study's goal was to leverage expert opinion to develop a classification system of potential sources of error that may be encountered when using robotics in spine surgery. This not only provides practitioners, particularly those in the early stages of robotic adoption, with insight into possible sources of error but also provides the community at large with a more standardized language through which to communicate.
Methods: The Delphi method, which is a validated system of developing consensus, was utilized. The method employed an iterative presentation of classification categories that were then edited, removed, or elaborated upon during several rounds of discussion. Voting took place to accept or reject the individual classification categories with consensus defined as ≥ 80% agreement.
Results: After a three-round iterative survey and video conference Delphi process, followed by an in-person meeting at the Safety in Spine Surgery Summit, consensus was achieved on a classification system that includes four key types of potential sources of error in RASS as well as a list of the most commonly identified sources within each category. Initial sources of error that were considered included: cannula skidding/skive, penetration, screw misplacement, registration failure, and frame shift. After completion of the Delphi process, the final classification included four major types of pitfalls including: Reference/Navigation, Patient Factors, Technique, and Equipment Factors (available at https://safetyinspinesurgery.com/ ).
Conclusion: This work provides expert insight into potential sources of error in the setting of robotic spine surgery. The working group established four discrete categories while providing a standardized language to unify communication.
期刊介绍:
Spine Deformity the official journal of the?Scoliosis Research Society is a peer-refereed publication to disseminate knowledge on basic science and clinical research into the?etiology?biomechanics?treatment?methods and outcomes of all types of?spinal deformities. The international members of the Editorial Board provide a worldwide perspective for the journal's area of interest.The?journal?will enhance the mission of the Society which is to foster the optimal care of all patients with?spine?deformities worldwide. Articles published in?Spine Deformity?are Medline indexed in PubMed.? The journal publishes original articles in the form of clinical and basic research. Spine Deformity will only publish studies that have institutional review board (IRB) or similar ethics committee approval for human and animal studies and have strictly observed these guidelines. The minimum follow-up period for follow-up clinical studies is 24 months.