Unravelling the potency of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold with S-arylamide hybrids as PIM-1 kinase inhibitors: synthesis, biological activity and in silico studies.
Soha R Abd El Hadi, Manar A Eldinary, Amna Ghith, Hesham Haffez, Aya Salman, Ghadir A Sayed
{"title":"Unravelling the potency of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold with <i>S</i>-arylamide hybrids as PIM-1 kinase inhibitors: synthesis, biological activity and <i>in silico</i> studies.","authors":"Soha R Abd El Hadi, Manar A Eldinary, Amna Ghith, Hesham Haffez, Aya Salman, Ghadir A Sayed","doi":"10.1039/d5md00021a","DOIUrl":null,"url":null,"abstract":"<p><p>PIM-1 is a type of serine/threonine kinase that plays a crucial role in controlling several vital processes, including proliferation and apoptosis. New synthetic <i>S</i>-amide tetrahydropyrimidinone derivatives were designed and synthesized as PIM-1 inhibitors with potential anticancer activity. Several biochemical assays were performed for anticancer assessment, including PIM-1 inhibitory assays, MTT, apoptosis and cell cycle, gene expression analysis, <i>c-MYC</i> analysis, and ATPase inhibitory assays. Compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibited strong <i>in vitro</i> broad antiproliferative activity against MCF-7, DU-145, and PC-3, with a relatively higher SI index suggesting minimal cytotoxicity to normal cells. Furthermore, these compounds induced mixed late apoptosis and necrosis with cell cycle arrest at the G2/M phase. Moreover, compounds 8b, 8f, 8g, 8k, and 8l showed potent inhibitory action against PIM-1 kinase, with corresponding IC<sub>50</sub> values of 660, 909, 373, 518, and 501 nM. <i>In silico</i> prediction studies of physiochemical properties, molecular dynamics, and induced fit docking studies were performed for these compounds to explain their potent biological activity. In conclusion, new pyrimidinone compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibit potential PIM-1 inhibitory activity and can be used as promising scaffolds for further optimization of new leads with selective PIM-inhibitors and anticancer activity.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d5md00021a","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PIM-1 is a type of serine/threonine kinase that plays a crucial role in controlling several vital processes, including proliferation and apoptosis. New synthetic S-amide tetrahydropyrimidinone derivatives were designed and synthesized as PIM-1 inhibitors with potential anticancer activity. Several biochemical assays were performed for anticancer assessment, including PIM-1 inhibitory assays, MTT, apoptosis and cell cycle, gene expression analysis, c-MYC analysis, and ATPase inhibitory assays. Compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibited strong in vitro broad antiproliferative activity against MCF-7, DU-145, and PC-3, with a relatively higher SI index suggesting minimal cytotoxicity to normal cells. Furthermore, these compounds induced mixed late apoptosis and necrosis with cell cycle arrest at the G2/M phase. Moreover, compounds 8b, 8f, 8g, 8k, and 8l showed potent inhibitory action against PIM-1 kinase, with corresponding IC50 values of 660, 909, 373, 518, and 501 nM. In silico prediction studies of physiochemical properties, molecular dynamics, and induced fit docking studies were performed for these compounds to explain their potent biological activity. In conclusion, new pyrimidinone compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibit potential PIM-1 inhibitory activity and can be used as promising scaffolds for further optimization of new leads with selective PIM-inhibitors and anticancer activity.