Machine Learning Prediction Model of Waitlist Outcomes in Patients with Primary Sclerosing Cholangitis.

IF 1.9 Q3 TRANSPLANTATION
Transplantation Direct Pub Date : 2025-03-28 eCollection Date: 2025-04-01 DOI:10.1097/TXD.0000000000001774
Xun Zhao, Maryam Naghibzadeh, Yingji Sun, Arya Rahmani, Leslie Lilly, Nazia Selzner, Cynthia Tsien, Elmar Jaeckel, Mary Pressley Vyas, Rahul Krishnan, Gideon Hirschfield, Mamatha Bhat
{"title":"Machine Learning Prediction Model of Waitlist Outcomes in Patients with Primary Sclerosing Cholangitis.","authors":"Xun Zhao, Maryam Naghibzadeh, Yingji Sun, Arya Rahmani, Leslie Lilly, Nazia Selzner, Cynthia Tsien, Elmar Jaeckel, Mary Pressley Vyas, Rahul Krishnan, Gideon Hirschfield, Mamatha Bhat","doi":"10.1097/TXD.0000000000001774","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Liver transplantation is essential for many people with primary sclerosing cholangitis (PSC). People with PSC are less likely to receive a deceased donor liver transplant compared with other causes of chronic liver disease. This disparity may stem from the inaccuracy of the model for end-stage liver disease (MELD) in predicting waitlist mortality or dropout for PSC. The broad applicability of MELD across many causes comes at the expense of accuracy in prediction for certain causes that involve unique comorbidities. We aimed to develop a model that could more accurately predict dynamic changes in waitlist outcomes among patients with PSC while including complex clinical variables.</p><p><strong>Methods: </strong>We developed 3 machine learning architectures using data from 4666 patients with PSC in the Scientific Registry of Transplant Recipients (SRTR) and tested our models on our institutional data set of 144 patients at the University Health Network (UHN). We evaluated their time-dependent concordance index (C-index) for mortality prediction and compared it against MELD-sodium and MELD 3.0.</p><p><strong>Results: </strong>Random survival forest (RSF), a decision tree-based survival model, outperformed MELD-sodium and MELD 3.0 in both the SRTR and the UHN test data set using the same bloodwork variables and readily available demographic data. It achieved a C-index of 0.868 (SD 0.020) and 0.771 (SD 0.085) on the SRTR and UHN test data, respectively. Training a separate RSF model using the UHN data with PSC-specific achieved a C-index of 0.91. In addition to high MELD score, increased white blood cells, time on the waiting list, platelet count, presence of Autoimmune hepatitis-PSC overlap, aspartate aminotransferase, female sex, age, history of stricture dilation, and extremes of body weight were the top-ranked features predictive of the outcomes.</p><p><strong>Conclusions: </strong>Our RSF model offers more accurate waitlist outcome prediction in PSC. The significant performance improvement with the inclusion of PSC-specific variables highlights the importance of disease-specific variables for predicting trajectories of clinically distinct presentations.</p>","PeriodicalId":23225,"journal":{"name":"Transplantation Direct","volume":"11 4","pages":"e1774"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957646/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation Direct","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/TXD.0000000000001774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TRANSPLANTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Liver transplantation is essential for many people with primary sclerosing cholangitis (PSC). People with PSC are less likely to receive a deceased donor liver transplant compared with other causes of chronic liver disease. This disparity may stem from the inaccuracy of the model for end-stage liver disease (MELD) in predicting waitlist mortality or dropout for PSC. The broad applicability of MELD across many causes comes at the expense of accuracy in prediction for certain causes that involve unique comorbidities. We aimed to develop a model that could more accurately predict dynamic changes in waitlist outcomes among patients with PSC while including complex clinical variables.

Methods: We developed 3 machine learning architectures using data from 4666 patients with PSC in the Scientific Registry of Transplant Recipients (SRTR) and tested our models on our institutional data set of 144 patients at the University Health Network (UHN). We evaluated their time-dependent concordance index (C-index) for mortality prediction and compared it against MELD-sodium and MELD 3.0.

Results: Random survival forest (RSF), a decision tree-based survival model, outperformed MELD-sodium and MELD 3.0 in both the SRTR and the UHN test data set using the same bloodwork variables and readily available demographic data. It achieved a C-index of 0.868 (SD 0.020) and 0.771 (SD 0.085) on the SRTR and UHN test data, respectively. Training a separate RSF model using the UHN data with PSC-specific achieved a C-index of 0.91. In addition to high MELD score, increased white blood cells, time on the waiting list, platelet count, presence of Autoimmune hepatitis-PSC overlap, aspartate aminotransferase, female sex, age, history of stricture dilation, and extremes of body weight were the top-ranked features predictive of the outcomes.

Conclusions: Our RSF model offers more accurate waitlist outcome prediction in PSC. The significant performance improvement with the inclusion of PSC-specific variables highlights the importance of disease-specific variables for predicting trajectories of clinically distinct presentations.

背景:对于许多原发性硬化性胆管炎(PSC)患者来说,肝移植是必不可少的。与其他原因导致的慢性肝病相比,原发性硬化性胆管炎患者接受死亡供体肝移植的可能性较低。造成这种差异的原因可能是终末期肝病模型(MELD)在预测 PSC 候选者死亡率或退出时的不准确性。MELD 广泛适用于多种病因,但却牺牲了对涉及特殊合并症的某些病因进行预测的准确性。我们的目标是开发一种能更准确预测 PSC 患者候诊结果动态变化的模型,同时纳入复杂的临床变量:我们利用移植受者科学登记处(SRTR)中4666名PSC患者的数据开发了3种机器学习架构,并在大学健康网络(UHN)144名患者的机构数据集上测试了我们的模型。我们评估了这些模型预测死亡率的随时间变化的一致性指数(C-index),并将其与 MELD-钠和 MELD 3.0 进行了比较:随机生存森林(RSF)是一种基于决策树的生存模型,在 SRTR 和 UHN 测试数据集中,使用相同的血液检查变量和现成的人口统计学数据,RSF 的表现优于 MELD-钠和 MELD 3.0。它在 SRTR 和 UHN 测试数据中的 C 指数分别为 0.868(SD 0.020)和 0.771(SD 0.085)。使用 UHN 数据训练一个单独的 RSF 模型,PSC 特异性的 C 指数为 0.91。除了高 MELD 评分外,白细胞增加、候诊时间、血小板计数、自身免疫性肝炎-PSC 重叠、天冬氨酸氨基转移酶、女性性别、年龄、狭窄扩张史和极端体重也是预测结果的首要特征:我们的 RSF 模型能更准确地预测 PSC 的候诊结果。结论:我们的RSF模型能更准确地预测PSC患者的候诊结果,加入PSC特异性变量后,模型的性能有了明显改善,这凸显了疾病特异性变量对预测临床表现不同的病程轨迹的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transplantation Direct
Transplantation Direct TRANSPLANTATION-
CiteScore
3.40
自引率
4.30%
发文量
193
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信