Baoluo Du, Ziqiang Dai, Huan Wang, Zhipeng Ren, Dianyuan Li
{"title":"Advances and Prospects in Using Induced Pluripotent Stem Cells for 3D Bioprinting in Cardiac Tissue Engineering.","authors":"Baoluo Du, Ziqiang Dai, Huan Wang, Zhipeng Ren, Dianyuan Li","doi":"10.31083/RCM26697","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular diseases remain one of the leading causes of death worldwide. Given the limited self-repair capacity of cardiac tissue, cardiac tissue engineering (CTE) aims to develop strategies and materials for repairing or replacing damaged cardiac tissue by combining biology, medicine, and engineering. Indeed, CTE has made significant strides since the discovery of induced pluripotent stem cells (iPSCs) in 2006, including creating cardiac patches, organoids, and chip models derived from iPSCs, thus offering new strategies for treating cardiac diseases.</p><p><strong>Methods: </strong>A systematic search for relevant literature published between 2003 and 2024 was conducted in the PubMed and Web of Science databases using \"Cardiac Tissue Engineering\", \"3D Bioprinting\", \"Scaffold in Tissue Engineering\", \"Induced Pluripotent Stem Cells\", and \"iPSCs\" as keywords.</p><p><strong>Results: </strong>This systematic search using the abovementioned keywords identified relevant articles for inclusion in this review. The resulting literature indicated that CTE can offer innovative solutions for treating cardiac diseases when integrated with three-dimensional (3D) bioprinting and iPSC technology.</p><p><strong>Conclusions: </strong>Despite notable advances in the field of CTE, multiple challenges remain relating to 3D-bioprinted cardiac tissues. These include maintaining long-term cell viability, achieving precise cell distribution, tissue vascularization, material selection, and cost-effectiveness. Therefore, further research is needed to optimize printing techniques, develop more advanced bio-inks, explore larger-scale tissue constructs, and ensure the biosafety and functional fidelity of engineered cardiac tissues. Subsequently, future research efforts should focus on these areas to facilitate the clinical translation of CTE. Moreover, additional long-term animal models and preclinical studies should be conducted to ensure the biosafety and functionality of engineered cardiac tissues, thereby creating novel possibilities for treating patients with heart diseases.</p>","PeriodicalId":20989,"journal":{"name":"Reviews in cardiovascular medicine","volume":"26 3","pages":"26697"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in cardiovascular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/RCM26697","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiovascular diseases remain one of the leading causes of death worldwide. Given the limited self-repair capacity of cardiac tissue, cardiac tissue engineering (CTE) aims to develop strategies and materials for repairing or replacing damaged cardiac tissue by combining biology, medicine, and engineering. Indeed, CTE has made significant strides since the discovery of induced pluripotent stem cells (iPSCs) in 2006, including creating cardiac patches, organoids, and chip models derived from iPSCs, thus offering new strategies for treating cardiac diseases.
Methods: A systematic search for relevant literature published between 2003 and 2024 was conducted in the PubMed and Web of Science databases using "Cardiac Tissue Engineering", "3D Bioprinting", "Scaffold in Tissue Engineering", "Induced Pluripotent Stem Cells", and "iPSCs" as keywords.
Results: This systematic search using the abovementioned keywords identified relevant articles for inclusion in this review. The resulting literature indicated that CTE can offer innovative solutions for treating cardiac diseases when integrated with three-dimensional (3D) bioprinting and iPSC technology.
Conclusions: Despite notable advances in the field of CTE, multiple challenges remain relating to 3D-bioprinted cardiac tissues. These include maintaining long-term cell viability, achieving precise cell distribution, tissue vascularization, material selection, and cost-effectiveness. Therefore, further research is needed to optimize printing techniques, develop more advanced bio-inks, explore larger-scale tissue constructs, and ensure the biosafety and functional fidelity of engineered cardiac tissues. Subsequently, future research efforts should focus on these areas to facilitate the clinical translation of CTE. Moreover, additional long-term animal models and preclinical studies should be conducted to ensure the biosafety and functionality of engineered cardiac tissues, thereby creating novel possibilities for treating patients with heart diseases.
期刊介绍:
RCM is an international, peer-reviewed, open access journal. RCM publishes research articles, review papers and short communications on cardiovascular medicine as well as research on cardiovascular disease. We aim to provide a forum for publishing papers which explore the pathogenesis and promote the progression of cardiac and vascular diseases. We also seek to establish an interdisciplinary platform, focusing on translational issues, to facilitate the advancement of research, clinical treatment and diagnostic procedures. Heart surgery, cardiovascular imaging, risk factors and various clinical cardiac & vascular research will be considered.