Reciprocal regulation between ferroptosis and STING-type I interferon pathway suppresses head and neck squamous cell carcinoma growth through dendritic cell maturation.
Mingyu Li, Shufang Jin, Hailong Ma, Xi Yang, Zhiyuan Zhang
{"title":"Reciprocal regulation between ferroptosis and STING-type I interferon pathway suppresses head and neck squamous cell carcinoma growth through dendritic cell maturation.","authors":"Mingyu Li, Shufang Jin, Hailong Ma, Xi Yang, Zhiyuan Zhang","doi":"10.1038/s41388-025-03368-2","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) presents a serious clinical challenge mainly due to its resistance to conventional therapies and its complex, immunosuppressive tumor microenvironment. While recent studies have identified ferroptosis as a new therapeutic option, its impact on the immune microenvironment in HNSCC remains controversial, which may hinder its translational application. Although the role of the stimulator of interferon genes (STING)-type I interferon (IFN-I) pathway in antitumor immune responses has been widely investigated, its relationship with ferroptosis in HNSCC has not been fully explored. In this study, we discovered that ferroptosis in HNSCC inhibited tumor growth, activated STING-IFN-I pathway and subsequently improved recruitment and maturation of dendritic cells. We further demonstrated that IFN-I could enhance ferroptosis by inhibiting xCT-glutathione peroxidase 4 (GPX4) antioxidant system. To harness this positive feedback loop, we treated HNSCC tumors with both ferroptosis inducer and STING agonist, resulting in significant tumor suppression, elevated ferroptosis levels and enhanced dendritic cell infiltration. Overall, our findings reveal a mutually regulatory relationship between ferroptosis and the intrinsic STING-IFN-I pathway, providing novel insights into immune-mediated tumor suppression and suggesting its potential as therapeutic approach in HNSCC.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03368-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a serious clinical challenge mainly due to its resistance to conventional therapies and its complex, immunosuppressive tumor microenvironment. While recent studies have identified ferroptosis as a new therapeutic option, its impact on the immune microenvironment in HNSCC remains controversial, which may hinder its translational application. Although the role of the stimulator of interferon genes (STING)-type I interferon (IFN-I) pathway in antitumor immune responses has been widely investigated, its relationship with ferroptosis in HNSCC has not been fully explored. In this study, we discovered that ferroptosis in HNSCC inhibited tumor growth, activated STING-IFN-I pathway and subsequently improved recruitment and maturation of dendritic cells. We further demonstrated that IFN-I could enhance ferroptosis by inhibiting xCT-glutathione peroxidase 4 (GPX4) antioxidant system. To harness this positive feedback loop, we treated HNSCC tumors with both ferroptosis inducer and STING agonist, resulting in significant tumor suppression, elevated ferroptosis levels and enhanced dendritic cell infiltration. Overall, our findings reveal a mutually regulatory relationship between ferroptosis and the intrinsic STING-IFN-I pathway, providing novel insights into immune-mediated tumor suppression and suggesting its potential as therapeutic approach in HNSCC.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.