Effect of Pioglitazone on Endoplasmic Reticulum Stress and Autophagy Response in the Perivascular Adipose Tissue of Type 2 Diabetic Rats.

IF 3.5 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
PPAR Research Pub Date : 2025-03-21 eCollection Date: 2025-01-01 DOI:10.1155/ppar/9645836
Erkan Civelek, Ecem Fatma Karaman, Sibel Özden, B Sönmez Uydeş Doğan, Deniz Kaleli Durman
{"title":"Effect of Pioglitazone on Endoplasmic Reticulum Stress and Autophagy Response in the Perivascular Adipose Tissue of Type 2 Diabetic Rats.","authors":"Erkan Civelek, Ecem Fatma Karaman, Sibel Özden, B Sönmez Uydeş Doğan, Deniz Kaleli Durman","doi":"10.1155/ppar/9645836","DOIUrl":null,"url":null,"abstract":"<p><p>Perivascular adipose tissue (PVAT) plays a crucial role in vascular homeostasis. Recent studies in adipose tissue demonstrated that endoplasmic reticulum (ER) stress and autophagy are activated in Type 2 diabetes mellitus (T2DM), while the precise role of ER stress and autophagy in PVAT is unclear. We aimed to investigate the possible influence of pioglitazone on ER stress and autophagy response in PVAT of T2DM rats. T2DM was induced by high-fat diet/low-dose streptozotocin (HFD/STZ) in male Wistar rats (8-10 weeks), and pioglitazone (20 mg/kg/p.o.) was administered for 6 weeks. Changes in biochemical parameters (nonfasting glucose, total cholesterol, and triglyceride) were verified in blood samples. ER stress-related (<i>ATF4</i>, <i>CHOP</i>, and <i>GRP78</i>) and autophagy-related (<i>MAP1LC3B</i>/LC3-II, <i>BECN-1/</i>Beclin, and <i>SQSTM1</i>/p62) gene expression levels in thoracic PVAT were measured by RT-PCR. Pioglitazone treatment reversed the increased nonfasting glucose and triglyceride levels in T2DM. ER stress and autophagy responses were significantly increased in PVAT of T2DM rats. Pioglitazone increased ER stress-related <i>GRP78</i> gene expression while decreasing autophagy-related <i>MAP1LC3B</i> and <i>BECN-1</i> gene expression levels in T2DM. Interestingly, <i>SQSTM1</i> gene expression levels were increased by pioglitazone in the control and T2DM groups. The current study provides original findings regarding the effects of pioglitazone on ER stress and autophagy response in PVAT of HFD/STZ-induced T2DM rats. Pioglitazone treatment in T2DM increased <i>GRP78</i> and <i>SQSTM1</i> gene expressions, which both play a crucial role in adipocyte differentiation and adipogenesis, besides ER stress and autophagy. Further studies clarifying the adipogenic effect of pioglitazone on PVAT are needed for a better understanding of its effect on the vascular system.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2025 ","pages":"9645836"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/ppar/9645836","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perivascular adipose tissue (PVAT) plays a crucial role in vascular homeostasis. Recent studies in adipose tissue demonstrated that endoplasmic reticulum (ER) stress and autophagy are activated in Type 2 diabetes mellitus (T2DM), while the precise role of ER stress and autophagy in PVAT is unclear. We aimed to investigate the possible influence of pioglitazone on ER stress and autophagy response in PVAT of T2DM rats. T2DM was induced by high-fat diet/low-dose streptozotocin (HFD/STZ) in male Wistar rats (8-10 weeks), and pioglitazone (20 mg/kg/p.o.) was administered for 6 weeks. Changes in biochemical parameters (nonfasting glucose, total cholesterol, and triglyceride) were verified in blood samples. ER stress-related (ATF4, CHOP, and GRP78) and autophagy-related (MAP1LC3B/LC3-II, BECN-1/Beclin, and SQSTM1/p62) gene expression levels in thoracic PVAT were measured by RT-PCR. Pioglitazone treatment reversed the increased nonfasting glucose and triglyceride levels in T2DM. ER stress and autophagy responses were significantly increased in PVAT of T2DM rats. Pioglitazone increased ER stress-related GRP78 gene expression while decreasing autophagy-related MAP1LC3B and BECN-1 gene expression levels in T2DM. Interestingly, SQSTM1 gene expression levels were increased by pioglitazone in the control and T2DM groups. The current study provides original findings regarding the effects of pioglitazone on ER stress and autophagy response in PVAT of HFD/STZ-induced T2DM rats. Pioglitazone treatment in T2DM increased GRP78 and SQSTM1 gene expressions, which both play a crucial role in adipocyte differentiation and adipogenesis, besides ER stress and autophagy. Further studies clarifying the adipogenic effect of pioglitazone on PVAT are needed for a better understanding of its effect on the vascular system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PPAR Research
PPAR Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.20
自引率
3.40%
发文量
17
审稿时长
12 months
期刊介绍: PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信