{"title":"Regular logarithmic connections.","authors":"Piotr Achinger","doi":"10.1007/s00208-024-03047-9","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the notion of a regular integrable connection on a smooth log scheme over <math><mi>C</mi></math> and construct an equivalence between the category of such connections and the category of integrable connections on its analytification, compatible with de Rham cohomology. This extends the work of Deligne (when the log structure is trivial), and combined with the work of Ogus yields a topological description of the category of regular connections in terms of certain constructible sheaves on the Kato-Nakayama space. The key ingredients are the notion of a canonical extension in this context and the existence of good compactifications of log schemes obtained recently by Włodarczyk.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"391 4","pages":"5293-5339"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-03047-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the notion of a regular integrable connection on a smooth log scheme over and construct an equivalence between the category of such connections and the category of integrable connections on its analytification, compatible with de Rham cohomology. This extends the work of Deligne (when the log structure is trivial), and combined with the work of Ogus yields a topological description of the category of regular connections in terms of certain constructible sheaves on the Kato-Nakayama space. The key ingredients are the notion of a canonical extension in this context and the existence of good compactifications of log schemes obtained recently by Włodarczyk.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.